学年

教科

質問の種類

数学 高校生

数Ⅱ 軌跡を求める問題です。 写真の解説一行目で、基本例題98ではいつも使っている文字としてP(x,y)としたのですが、PR98でPの座標をP(x,y)としたら間違っていて、x,y以外の文字にする、と書かれていました。 2つの問題の違い、なぜPR98の問題でP(x,y)と置... 続きを読む

基本 例題 98 曲線上の動点に連動する点の軌跡 DACTICE (木) 98 thehet 1 00000 点Qが円x+y=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 CHART & SOLUTION 連動して動く点の軌跡 p.158 基本事項 1 つなぎの文字を消去して、 x yだけの関係式を導く ...... 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件を s, を用いた式で表し, P, Qの関係から, s, tをそれぞれx, yで表す。 これをQの条件式に 代入して,s, tを消去する。 解答 Q(s, t), P(x,y) とする。 x+y=9上の点であるから Pは線分AQ を 2:1 に内分する点であるから s2+t2=9 13 ① (s, t) 2- A 1・2+2t 2+2t Q (1,2) 3 -, y= 2+1 3 -3 0 1・1+2s 1+2s x= 2+1 よって s=3x21.t=3v22 2 ●これを①に代入すると (321)+(3x-2)=9 ゆえに (12/21)+(1/2)=9 よって(x-1)+(y-22-4 =4 ...... ② したがって, 点Pは円 ②上にある。 逆に円 ②上の任意の点は,条件を満たす。 以上から、 求める軌跡は 中心 2) 3'3' 半径20円 P(x,y) つなぎの文字 s, tを消 去。 これによりPの条 件(x, yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y^2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) = 0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。 RACTICE 982 放物線y=x2 ① とA(1,2), B(-1, -2), C(4, -1) がある。 点Pが放物線 ①上を動くとき、次の点Q, R の軌跡を求めよ。 (1) 線分APを2:1 に内分する点Q (2) △PBCの重心R

解決済み 回答数: 1
数学 高校生

P(A)=21/36の36というのはどうやって計算したか教えてください🙇

4.24(木) (小間集合で複数分野を復習しましょう。 ちょっと多いかも。がんばろう!) (1) AB=7,BC=8, CA=9 である △ABCの重心をGとする。 (i) cos ∠ABC の値を求めよ。 (ii) 線分AGの長さを求めよ。 (2) 1個のさいころを繰り返し投げ、 出た目の和が7以上になった時点で終了 する。 終了するまでに投げた回数が2である」 という事象をAとし、 「1の目が少なくとも1回出る」 という事象をBとする。 (i) 確率 P(A) を求めよ。 (ii) 条件付き確率 P (B) を求めよ。 (3) (i) 2進法で表された数 111()を10進法で表せ。 (ii) 4進法で表された数 111.11 () を2進法で表せ。 (4) αは実数の定数とし、 関数f(x) を f(x)=x?-2ax-2+1 とする。 (i) 放物線y=f(x)の頂点の座標を求めよ。 (ii) αの値を求めよ。 におけるf(x)の最小値が0であるとき、 (1)(1) 余弦定理より COS∠ABC= = 49+64-81 2.7.8 3322 4-7-88 2 . B 7 ① M G 9 (1) BCの中点をMとおくと、AG:GM=2:1 である。ΔABMで余弦定理より AM²=49+16-2-7.4.12/23・49. AM>0より AM=7. (3) (1) 川 (2) =2x1+2x1+20x1 =4+2+1 = 7 + (ii) |111| (4) ° X * 4* |+4× | +4°× | + 4 *x+4x | =2x1+2x+2x1+2×1+2x1 10101.0101 (2) # (4) (1) f(x)=x^2-2a-20²+ | = (x-a)³-3a²+1 よって、頂点は(a,-302+1) 女 (軸のだから場合分けをする。 ① aco のとき minf(0)=-2041=0 a² = 1/1 201 したがって、AG=AMX 1/32 =7×3=1 2 Q = I (2) (1) 終了するまでに投げた回数が2回と なるのは、 |- 1-6-2-824 the の21通り、よって、P(A)=話・7/2 acoy a ②0≦a≦l のとき min fla)=-3a+1= = 0 a=土 Deaɛl my as to M 11/1

解決済み 回答数: 1
数学 高校生

数Ⅲの関数のグラフについてです。 lim(x→2√2-0)y’=-∞とlim(x→+0)y’=2√2をもとめるのはなんでか知りたいです。 yの極限ではなく、y’の極限を求めているのは漸近線とは別の目的があるんですか??

110 in 重安 例題 光形 (3) 陰関数 00000 方程式y2=x2(8-x2) が定めるxの関数yのグラフの概形をかけ。200 して 問題における便の 次の 基本 107 108 陰関数の形のままではグラフがかけないから、まずy=f(x)の形にする。そして,こ 指針 れまで学習したように,次の点に注意してグラフをかく。 定義域,対称性,増減と極値,凹凸と変曲点, 座標軸との共有点,漸近線 中でも、この問題では対称性がカギをにぎる。 y2=x2(8-x2) において xをxとおいても同じ→y軸に関して対称 y-yとおいても同じx軸に関して対称 →原点に関して対称 185 解答 ...... 方程式でxを-x に, y を -y におき換えてもy2=x2(8-x2) は成り立つから,グラフはx軸, y軸, 原点に関して対称であ る。よって,x0,y≧0の範囲で考えるとめた内容を確認し y=x√8-x2 ■対称性の確認。 これ により, グラフをか く労力を減らす。 ① 12020 8-x≧0 であるから の 0<x<2√2のとき y'=√8-x2+x 28-x2 0≤x≤2√20 -2x 2(4-x2) 2x√8-x²-(4-x2)・ √8-x2 <y=f(x) の形に変形。 ◄x≥0 4 章 = きない 検討 求めるグラフは, y=x√8-x2 のグラフ 135 関数のグラフ -2x 2√8-x2 2x(x2-12) y"=2. 8-x2 (8-x28x2 とy=-x√8-x2 の y' = 0 とすると,0<x<2√2 では また, 0<x<2√2のとき y" <0 x=2 グラフを合わせたもの とも考えられる(この になる。 しても 更に x-2√2-0 x 0 [図1] x+0. yA 4 2 ... 2√2 2つのグラフは,x軸 0x2√2 における関数 ① の増減、凹凸は左下の表のように関して互いに対称)。 limy'=∞, limy'=2√2 〔図2] y J" 0 + 0 2 4 0 -2√2 O 122 x 0 22√2x よって, 0≦x≦2√2 における関数 ① のグラフは [図 1] のようになる。 T ゆえに、対称性により求めるグラフは [図2] のようになる。 coin A . y軸方向に4倍した

解決済み 回答数: 1
数学 高校生

数Ⅱ黄チャート基本例題85、PR85で質問です どちらも3点を通る円の方程式を求めよという問題なのですが、基本例題とPRで解き方が違うので、使い分けがあるのかを知りたいです。 また、授業では基本例題の解き方しかやっていないので、PRの解き方も解説してほしいです。 長くなりま... 続きを読む

0 本 例題 85 円の方程式の決定 (2) 00000 3点A(3,1),B(6, 8), C(-2,-4) を通る円の方程式を求めよ。 p.138 基本事項 1 141 CHART & SOLUTION 3点を通る円の方程式 一般形 x2+y2+x+my+n=0 を利用 ① 一般形の円の方程式に, 与えられた3点の座標を代入 2 1,m,nの連立3元1次方程式を解く。 基本形を利用しても求められるが, 連立方程式が煩雑になる。 垂直二等分線の利用 3 求める円の中心は, ABC の外心であるから, 線分AC, BC それぞれの垂直二等分線の 交点の座標を求めてもよい。 12 解 求める円の方程式を x2+y2+lx+my+n=0 とする。 点A(3, 1) を通るから ←一般形が有効。 32+1+37+m+n=0 点B(6, -8) を通るから 62+(-8)2+61-8m+n=0 点C(-2, -4) を通るから (-2)^(-4)2-21-4m+n=0 整理すると 31+m+n+10=0 61-8m+n+100=0 2 円と直線,2つの円 21+4m-n-200 これを解いて l=-6,m=8, n=0 (第1式)+(第3式)から 1+m-2=0 (第2式) + (第3式) から 21-m+20=0 よって 3/+18=0 など。 よって, 求める円の方程式は x2+y^2-6x+8y=0 [別解 △ABCの外心Dが求める円 の中心である。 yA A /② 0 x 線分 AC の垂直二等分線の方程式は 中心D C 3 =-x- 線分ACの すなわち y=-x-1・・・・・・ ① 線分 BC の垂直二等分線の方程式は B 傾き1 y+6=2(x-2) すなわち y=2x-10 ② ①,②を連立して解くと x=3,y=-4 線分 BC の 中点 (2, -6), よって, 中心の座標はD(3,-4), 傾き - 12 半径は AD=1-(-4)=5 ゆえに求める円の方程式は (x-3)2+(y+4)²=25 RACTICE 85Ⓡ ② 3点 (4-1) (6, 3), (-3, 0) を通る円の方程式を求めよ。

解決済み 回答数: 1
1/85