学年

教科

質問の種類

数学 高校生

2531の問題において、なぜこの変形ができるのでしょうか。

ZXK -TT Cos=sin= 13 複素数平面 基本 22) るのはどんな場合か。ただし20 Pi (21) - zo) 180° 解答 (1) 21+222=122+12 +2r20001-4 であるから(問題2529) 121221=VP12+122+2172cos(01-02) =V (2)|21 + 22|=2+122+2200(01-02) VT12+2222 (-1 cos(01-02)≤1) =|72|+|2|=|21|+|22| (3)上の不等式で等号が成り立つのは または 20で cos(01-02)=1のとき よって, 等号は 10 または 22=0または と 01) 研究 複素数平面上で 21, 22および2+を 点をそれぞれP1, P2 およびPとする。 原点O と P1, P2が一直線上にあるとき, PA じ直線上にあって, OP1, OP2 が同じ向きな で 01-02=360°xn(n=0, 1, 2, ...) のとき、 (3x+ya+aẞ) 11 Br 1 + + Y a a (a++) (By+a+a)(a+3+2) (7)(1/+/+/1/1) a =(a+B+2)(B)+ya+αβ) R2 R2 By+ya+aß k=a+B+71 (By+ra+aβ)(By+ra+aβ) とおくと20 ? (a+B+)(a+B+) (y+ya+aß) (7+7+āß) (a+B+1)(a+B+7) = R² 与式==R ド・モアブルの定理 § 1. 複素数平面 よって、nを負の整数とし, n=-mとおけば 803 (cos0+isin0)"={(cos0+isin0)''}" ={cos(-0)+isin(-0)}" mは正の整数であるから {cos(-0)+isin(-0)}'' = cos(-me)+isin(-m0) ∴. (cos0+isin0)"=cosn0+isin no 2533. 〈ド・モアブルの定理〉 基本 nは正の整数で,=1であるとき 0 がどのような実数値であっても (cosO+isin0)" =cosno+isinne が成り立つことを,数学的帰納法によって 証明せよ。 -2532. 〈ド・モアブルの定理〉 基本 解答] n は整数であるから OP=OP1+OP2 ..|21+22|=|21|+|22| OP1, OP2 が反対向きならば (1) (cosa+isina)(cosβ+isinβ) 次の等式を証明せよ。ただし,i=V-1 とする。 (cos0+isin0)" =cosnl+isinn0 において, n=1のとき x(cosy+isiny) OP=OP1 ~ OP2 ...|21 +22|=|21|~|22| =cos(a+β+y)+isin(a+β+y) O. P1, P2 が一直線上にないときPOP を2隣辺とする平行四辺形の頂点で (2) nが正の整数のとき OP1 ~ PiPOP < OP1 +P,P 2 P.POP2 であるから sin 02 ) |21|~|32|<|21 +22| <|21|+|22| P1 3 1) ① ② ③ をまとめて |21|~|22|≦|21+2 | =1+22], |31|+|22| -011 る る。 基本 この結果を三角不等式ということがある。 2531. 〈複素数の絶対値> (cos a + isina) (cos a2+ i sin a2) ...(cos an+isinan) (cos0+isin0)=cosno+isinno (1) (cosa +isina) (cosβ+isinβ) = (cos a cosẞ-sina sin ẞ) + i(sinacos β + cosasin β) = cos(a + β)+isin(a+β) :: {cos(a +β) +isin(a+β)}(cosy+isiny) = cos{(a +B)+r}+isin{(a +B)+y} =cos(a+β+2)+isin (a +β+7) (2) (1) と同様にして ①の左辺 = cose+isin0 ①の右辺 = cos0+isin0 よって、この場合, 等式① は成り立つ。 n=kの場合、①の成立を仮定すれば (cos0+isin0) = cosk0+isink0 (cosQ+isin0)k+1 (cos0+isin0) (cosQ+isin0) = (cos0+isin0) × (cosk0 +isink0 ) = (cosocosko-sin Asink0) +i (sin Acosk0 + cos0sink0 ) =cos(k+1)0+isin(k + 1)0 ......2 ②はn=k+1の場合も等式①の成り立つことを 示している。 よって、数学的帰納法により①はnが どんな正の整数でも成り立つ。 2534. 〈n 乗の計算〉 基本 複素数平面上において、原点を中心とす る半径Rの円周上の3点を複素数o.d で表すとき By+ya+aß la+B+7l の値を求めよ。 ただし, a + β+7 キ によって する。 成立す [解答 点α, B, は点Oを中心 半径Rの円上 にあるから a=|a|=R2 同様にβ・万=・=R2 = cos(a1+a2++an) isin(a1+a2+・・・+αn) ここでa=a2=...=an=0とおけば (cos0+isine)" =cosn+isinno 研究ド・モアブルの定理はn が 0 または負の整 数のときも成り立つ。 =0のとき明らか。 n=1のとき (cos +isin 0) cos 0-isin 0 (coso+isino) (coso-isin0 ) = cos(-0) + isin(-0) 次の式の値を求めよ。 (cos 15°+isin 15°) 2535 〈n 乗の計算〉 解答 与式 = cos(15°×6)+isin(15°×6)=i 基本 √3+i=r(cos0+isin0) に適するr, 0 を求め、それによって(√3+i)の値を計 算せよ。ただし,r> 0 とする。 解答 V3 +i=rcos0+irsin0 から rcos0v3rsin0=1 2式を平方して辺々を加えると

解決済み 回答数: 1
数学 高校生

対数についての質問です。⑵においてm,nを正の整数と限定しているのは何故ですか?正の整数でなければ、左辺は偶数右辺は奇数にならないのですか?よろしくお願いします。

Think 914 例題171 無理数となる対数 2 対数と対数関数 339 **** log23の値を 2'=8, 3'=9,3243,2256 を利用して, 小数第 1位まで求めよ. () 10g103 が無理数であることを証明せよ. 103 の値を求めるので,対数をとるときは 底を2にするとよい . 考え方 (1) 与えられた条件を使って不等式を作る. (津田塾大改) <対数の定義> logaM=r⇔ α'=M (2)背理法を使って証明する. 有理数、無理数の定義は忘れないようにしよう。 (1)39 より 底2で両辺の対数をとると, log232=log29 を 解答 2 したがって 210g23=10g29より, 10g23= 2 したがって, 510g23=10g2243 より また,3243 より,底2で両辺の対数をとると, log235=log2243 log29 log28 log223 3log22 22 -=1.5 98 より, log23= log2243 log2256_810g22 5 5 -=1.6 5 以上より, log29>10g28 (底) >1であるから 対数を消せるように 2Dを利用する. 243 256 より, log2243<log256 1.5<logz3 <1.6 も同様 よって, 10g23の小数第1位までの値は, 1.5 m (2)10g 103 が有理数であると仮定すると, 10g103>0 だか ら,互いに素な正の整数m, n を用いて, 1.5 1.6 log23=1.5... 10が1より大き log 103= m n く、真数3が1より m とおける. 対数の定義より, 10 = 3 大きいので, log103 0 両辺を乗すると, 10m=3" ここでmnは正の整数だから, 左辺10" は偶数, 右 10 は2と53" は 辺3" は奇数となり 3しか素因数をもた の よって, 10g103 は無理数である. ない (偶数 奇数 Focus 無理数の証明 有理数と仮定して背理法 m 有理数は (m, n は互いに素) とおく n 第 5 章 練習 171 (2) 10g37 は有理数でないことを証明せよ。 (1)10g102 の値を2°512,21024 を利用して, 小数第1位まで求めよ。 (慶應義塾大) →p.34817 *** また

解決済み 回答数: 1
数学 高校生

最大公約数が整数なのは何故ですか?(マイナスになることもあると思うのですが、) また、a.a+1が負の整数でも成り立つと書いてありますが、そうすると、m,nが自然数であることに矛盾してしまいませんか?

倍数、互いに素に関する証明 基本 例題 108 は自然数とする。 α+5は4の倍数であり, a+3は6の倍数であると (1) a き α+9は12の倍数であることを証明せよ。 (\2) 自然数a に対し, a と a +1は互いに素であることを証明せよ。 CHART & SOLUTION 倍数である, 互いに素であることの証明 (1) m,nを自然数として α+5=4m, a+3=6n と表される。 そして, 「aの倍数かつ の倍数ならば,aとbの最小公倍数の倍数」 であることを利用する。 また, αとが互いに素のとき 「ak が6の倍数ならば, kは6の倍数」 であることを 利用してもよい(別解 参照)。 (0:34.9) 18 18 3 (2) 互いに素である最大公約数が1 最大公約数をgとおいて, g=1であることを証明すればよい。 自然数 A, B についてAB=1⇔ A=B=1 を利用する。 答 (1)a+5,+3は,自然数m,nを用いて a+5=4m, a +3=6n と表される。 p.174,175 基本事項 1.5| ・① a+9=(a+5)+4=4m+4=4(m+1) a+9=(a+3)+6=6n+6=6(n+1) ② よって, ① より α+ 9 は 4の倍数であり, ② より α+9は 6の倍数でもある。 したがって, a +9は4と6の最小公倍数12の倍数である。 (2) α と a + 1 の最大公約数をg とすると a=mg, a+1=ng (m,nは互いに素な自然数) と表される。 (n-m)g=1 aが自然 a=mg を a+1=ng に代入すると キロ mg+1=ng すなわち は自然数であるから n-m=1,g=1 したがって, a と α+1の最大公約数は1であるから, a とα+1は互いに素である。 別解 (1) ①, ② から 4(m+1)=6(n+1) すなわち 2(m+1)=3(n+1) 2と3は互いに素である から,m+1は3の倍数 である。 よって m+1=3k(kは自然数) と表される。ゆえに a+9=4(m+1) だから、 183 =4.3k=12k したがって, α+9は12の 倍数である。 α を消去する。 ◆最大公約数は自然数。 ◆α と α+1 が負の整数で も同様に成り立つ。 4 13 紅 FE 女

解決済み 回答数: 2
数学 高校生

高校一年数学です。 ⑵で、「項ってなんだ!?」となってしまいました。 答えは31ですが、何が31なのでしょうか。 xに代入するんですか? とても疑問形でごめんなさい、、、 解説お願いします🙇‍♂️

E 重要 例題 展開式の係数 (4) (二項 \12 (1) (x- の展開式における, x の項の係数を求めよ。 x- 文字を入れるから価数 (②2)(x+2/12/2+1)を展開したとき, x を含まない項を求めよ。 文ない 1 2x2 CHART & SOLUTION 指数 指数法則の拡張 (第5章) 指数を 0 および正の整数から負の整数にまで拡張して、展開式の項の係数を求める。 まず 展開式の一般項を Ax ” の形で表す。 (2) 定数項(xを含まない項) はxの項である。 解答 12 (1)(x-23² ) の展開式の一般項は =a n a" xの項は r=3のときで, その係数は 3 12 Cr x1¹²-1( - 2 2 ² ) ² = 12 Cr ( - 12 ) ²/20¹² - + (-1 J + + ( )= + (x²) 12- 12-r x-2r x²r = 12 C + (-1/2-) ² x ² 5 (2)(x+12+1) の展開式の一般項は n p+g+r = 5 に代入して r=5-3g≧0,g≧0から よって ゆえに, x を含まない項は 5! 5! 12・11・10 13Co (-/12)-12.11.10×(-2)=5 12 XP-29 + 0!0!5!2!1!2! の利用 ■12-3 [大阪薬大 ] p.13 基本事項 6. 基本4, 重要7 72-3.3 = 9 55 5! 5! 1 9 1 1 1 * ² ( - ) ².1. か!g!r! か!g!z! p,g,r は整数でp ≧0,g≧0, r≧0, p+g+r=5 xを含まない項は2g=0 すなわち p = 24 のときであ る。 x=1 5.4.3 2・1 [愛知工大 3gtr5rのにそしたら、上のつかえる q=0, 1 (p, q, r)=(0, 0, 5), (2, 1, 2) ·=1+· -=31 08 12-3r=3 1x² 1 x2q (1) 1 (2) +0=1 PRACTICE 8° 次の式の展開式における. [ ]内に指定されたものを求めよ。 CHA (1), r n =x-29 (1) L ← x を含まない項は定 項でxの項。 (2 角 +059==+5.9 から, q を絞り込む。

解決済み 回答数: 1
1/6