学年

教科

質問の種類

数学 高校生

⑵の色の選び方と⑶の色の選び方が何で違うのかと、なんでそのような求め方になるのか教えて欲しいです!!

率 _392 基本事項 並べて固 子音という。 ....★ の方針。 同様に確から 前提にあるた のでも区別し 母音 利用。 並べる。 = 180 (通り) 根元事象が 列も同じ程 でも区別し 38 組合せと確率 本例題 黄の札が4枚ずつあり、どの色の札にも1から4までの番号が1つずつ る確率を求めよ。 全部同じ色になる。 かれている。 この12枚の札から無作為に3枚取り出したとき,次のことが起 色も番号も全部異なる。 [埼玉医大 ] 率 109 EX29\ (1)~(3)の各事象が起こる場合の数α は, 次のようにして求める。 場合の総数Nは, 全12枚の札から3枚を選ぶ 組合せ 123通り 積の法則 (I) (同じ色の選び方)×(番号の取り出し方) (2) 番号が全部異なる。 (②2) 異なる3つの番号の取り出し方) (色の選び方) 同色でもよい。 (3) 異なる3つの番号の取り出し方) ( 3つの番号の色の選び方) 12枚の札から3枚の札を取り出す方法は 赤, 青, 黄のどの色が同じになるかが その色について,どの番号を取り出すかが よって 求める確率は 3C1×4C3_ 3×4 12C3 220 よって 43 札を選ぶ 「順序」にも注目して考えると 色の選び方は 31, 番号の順序は4P3 で 3C1X4C3 12C3 a N 123 通り 3C1 通り 4C3通り 3 55 3通り 取り出した3つの番号を小さい順に並べ, それに対し, 3色を順に黄赤青 対応させる,と考えると,取り出した番号1組について、色の対応黄青赤 が3P3通りある。 /p.392 基本事項 6 220 55 4C3X3P3 4X6 12C3 (3) 1 2 3 赤青 3黄 赤黄青 青 赤 黄 青黄赤 (2)どの3つの番号を取り出すかが そのおのおのに対して, 色の選び方は3通りずつある3つの番号それぞれに対 し,3つずつ色が選べる から、番号が全部異なる場合は 4C3×38通り から 3×3×3=33 4C3X33 4×27 27 よって 求める確率は 12C3 220 55 (3) どの3つの番号を取り出すかが Cg 通りあり、取り出赤,青,黄の3色に対し, した3つの番号の色の選び方が 3 P3通りあるから、色も 1 2 3 4 から3つの数 番号も全部異なる場合は 3×3P3通り よって求める確率は 397 | (1) 札を選ぶ順序にも注目 して考えてもよい。 下の 参考 を参照。 P通り ⑥事象と確率 を選んで対応させると 考えて, 1×4P3 通りとし てもよい。 N = 12P3=12C3×3! a=3C1×4P3=3C1×4C3×3! となる。同様に考えて (2) a=4P3×33 (3)a=P3×3P3 2章 2 [北海学園大 ] 1組のトランプの絵札 (ジャック, クイーン, キング) 合計12枚の中から任意に4 の札を選ぶとき、次の確率を求めよ。 スペード, ハート, ダイヤ, クラブの4種類の札が選ばれる確率 ジャック, クイーン, キングの札が選ばれる確率 スペード クラブの4種類の札が選ばれ, かつジャック, ク n 409 EX 30 、

回答募集中 回答数: 0
数学 高校生

33番の問題教えてほしいです、 右の写真は解答なんですけど、なんでeの次にle、loe、losといった順番で考えていくのかがわかりません。 eのつぎはelじゃないの?とかleの次はloじゃないの?と思ってしまいます。 誰か教えて下さるとありがたいです至急お願いします!!!

■18 d₂ (1) 文字列 earth は何番 考え方 辞書式に並べるときの順番はアルファベット順である。 4!個 解 (1) a ○○○○となる文字列は 次に, eah ○○となる文字列は 次に, ear ○○となる文字列は よって, 文字列 earth は 数学A 2!個 earht, earth 4! + 2! +2 = 28 (番目) (2) ○○○○○○○○ となる文字列は 3!=6 (個) ha ○○○ となる文字列は よって,ここまでに 48+6=54 (個) 並ぶ。 したがって, 55番目の文字列は heart たる文字列を 4! × 2 = 48 (個) 33e, 1, 0, s,vの5文字全部を使って辞書式に配列するとき, 次の問に答え | (1) 文字列 loves は何番目か。 (2) 88番目にあたる文字列を求めよ □ 34 5色の絵の具がある。 右の図の5個の部分を、この5色の絵の具 すべてを使って塗り分けたい。 塗り方は何通りあるか。 ただし, 回転 させたときに他の塗り方と一致する場合, それらの塗り方は同じもの と見なす。 37 † 例題 3 B IL あるか。 解 38 1の整 39 上

回答募集中 回答数: 0
1/10