学年

教科

質問の種類

数学 高校生

(3)の問題の解説の最後の4ってどこから来たんですか?教えてください!!お願いします

事柄E の起こり方が通りあり、その おのおのの起こり方に対して事柄 F の起こ り方がn通りあるとき, 「E, Fがともに (あるいは続けて) 起こる場合の数」 は mn 通り ば,求める記入の仕方が得られる. (3) まず, 8つの数の和が偶数となるのはどのような ときか考えよう. 一般に,偶数,奇数の和の偶奇について, (偶数) + (偶数) = (偶数), (奇数)+(奇数) = (偶数), 積の法則 (偶数)+(奇数)=(奇数) を用いると,一番左の縦の列の記入の仕方は 3.26通り である. である. 他の縦の列の記入の仕方も同様にそれぞれ6通 りであるから, 再び積の法則を用いると, 記入の仕 方は全部で となる. 6.6・6・6=6通り (2) 1,2,3 すべての数字を用いて記入したものを直 接数え上げようとすると, 1, 2, 3 をそれぞれいく つずつ用いて記入するか場合分けをして計算するこ とになり、やや面倒である. そこで解答では, (1)で求めた記入の仕方が (i) 1, 2, 3 すべての数字を用いる場合, さらに,(2)の記入の仕方では, 2 (偶数) の記入 されるマス目の個数が1以上4以下であることに 着目して, 「2 (偶数)」 と 「1または3 (奇数)」が それぞれいくつ記入されるかと,そのときの8つ の数の和の偶奇を表にすると,次のようになる。 2 (偶数) 1または3 (奇数) 8つの数の和の偶奇 1つ 2つ 3つ 4つ 7つ 6 つ 5つ 4つ 奇数偶数 奇数偶数 よって、8つの数の和が偶数となるような記入の 仕方には,次の(ア)(イ) の2つの場合がある. (ア) 221または3を6つ記入する場合. (イ) 2を4つ 1または3を4つ記入する場合. 解答では、(ア)の記入の仕方を 2 2 2つの2を記入 2列の上段または下段に 一方,縦の列に記入する数字の組合せに着目し, 次のように解くこともできる. (3)の別解) 縦の列に記入する数字の組合せは {1, 2}, {1,3}, {2,3} の3組あり, 2が記入されている縦の列 2 3 の残りのマス目に 1 2 1または3を記入 2 3 3 1 残りの縦2列に 1 1 2 3 1または3を記入 の順に考えた. それぞれの記入の仕方は順に 4C2・22=24通り, 2・2=4通り, 24通り であるから, (ア)の記入の仕方は である. 24.4.4=384 通り また、(イ)の記入の仕方を 2 2 22 縦 4列の上段または下段に 4つの2を記入 残りの4マスに1または3 {1, 2} の2数の和3は奇数, {1,3} の2数の和4は偶数, {2,3} の2数の和5は奇数 であることに着目すると、 表に書かれている8つ の数の和が偶数となるような記入の仕方には,次の (ウ),(エ)の2つの場合がある. (ウ){1,3} で縦 2列, {1, 2} または {2, 3} で縦 2列を記入する場合. {1,3} で縦 2列を記入する仕方を考える. 記入する縦の列を4列から2列選び,さらに, それぞれ1, 3 を表の上段, 下段に記入すると考 えると, {1,3} で縦2列を記入する仕方は 2・22=24通り 次に,この記入の仕方それぞれに対し、残った 縦2列を {1, 2} または {2,3} で記入する仕方 を考える. 記入する数字の組合せの選び方が22通りあ り,それぞれに対して表の上段, 下段への記入の 仕方が 22通りあるから, 縦 2列を {1, 2} また は{2,3} で記入する仕方は

未解決 回答数: 1
数学 高校生

この解説以外での求め方があれば教えて欲しいです。 よろしくお願いいたします。

基礎問 精講 150 91 場合の数 (II) 1,2,3とかかれたカードが2枚ずつ計8枚ある. この8枚のうち、3枚を使って3桁の整数をつくる 次の 問いに答えよ. ただし,同じ数字のカードは区別がつかないとする。 (1) (2) (3) を使わないものばいくつあるか. を使うものはいくつあるか. 3桁の整数はいくつあるか. 整数をつくるときに問題になるのは, 0 を最高位 (=左端)におい てはいけないという点です。 だから, 1, 2)でやっているように、 同時に起こらないいくつかの場合に分けたとき, 全体の場合の数はそれらの場 を使う場合と, を使わない場合に分けて考えます。このように、 合の数の和になります(これを, 和の法則といいます)。 ただし,各カードが1枚ずつであれば, I のように計算で場合の数を求 めることができます。 001 283 解答 (1)1,2,3が各2枚ずつあるので,3桁の整数をつくって、 小さい順に並べると, 112, 113, 121,122,123, 131, 132, 133, 211, 212, 213,221,223, 231,232, 233,311,312,313,321, 322,323,331,332 以上 24 個. 20,1,2,3が各2枚ずつあるので, 3桁の整数をつくって, 小さい順に並べると, 100, 101, 102, 103, 110, 120, 130, 200, 201,202, 203,210,220,230, 300, 規則性をもって | 規則性をもって G

解決済み 回答数: 1
数学 高校生

(3)でなぜ「4枚取り出した時点で負けとなる確率」 までしか求めていないのかが分かりませんでした。 「5枚取り出した時に負けとなる確率」は余事象を求める時に引かなくて良いのでしょうか。

袋の中に0から4までの数字のうち1つが書かれたカードが1枚ずつ合計5枚入っ ている。4つの数0.369をマジックナンバーと呼ぶことにする。次のような ルールをもつ,1人で行うゲームを考える。 [ルール]袋から無作為に1枚ずつカードを取り出していく。 ただし,一度取り出し たカードは袋に戻さないものとする。 取り出したカードの数字の合計がマ ジックナンバーになったとき, その時点で負けとし、それ以降はカードを 取り出さない。途中で負けとなることなく, すべてのカードを取り出せた とき,勝ちとする。 以下の問に答えよ。 (1)2枚のカードを取り出したところで負けとなる確率を求めよ。 180 (2)3枚のカードを取り出したところで負けとなる確率を求めよ。 加える。 (3) このゲームで勝つ確率を求めよ。 ポイント (1) 2枚のカードを取り出したところで,合計がマジックナンバーとなる場 alest 合を具体的に考える。 (2)(1) と同様であるが, 樹形図を描くなどして, 整理して考えないと, 数え落としなど が生じる。 0 または3のカードが1枚目 3枚目になることはないなどを考慮すれば数 えやすくなる。 (3) 直接数え上げるのは大変であるので余事象を考える。 解法 (1) 取り出し方は全部で 5×4=20 通り 1回目がマジックナンバーでなく, 1回目 2回目の合計がマジックナンバーとなる 数の組合せは 1と2,24 それぞれ,取り出す順序が2通りあるので2枚取り出した時点で負けとなるのは 2×2=4通り 4 よって、確率は 1 = 205 (2) 取り出し方は全部で 5×4×3=60通り

解決済み 回答数: 1
1/29