学年

教科

質問の種類

数学 高校生

数一数と式 nがどこから出てきたのかわからないです。 後、エ、ケ、コサシ、ス、セがわからないです。 分かる方お願いします。

実践問題 太郎さんと花子さんのクラスでは、数学の授業で先生から次のような宿題が出された。 (1) 0026870 201 宿題 実数x に対して, A = (x + 1)(x + 2)(5 − x)(6 − x) B = Ax(4-x) : とおく。 きくとチェ AT OR <A> #¹3564 (a) x=2+√2 のときのBの値を求めよ。 (b) A=120となるようなxの値はいくつあるか。 ANTENJE) HERO 太郎さんと花子さんは,二つの整式 A,Bを整理していくことについて話している。 太郎 この整式Bについて, Aを用いずに表すと B = x(x+1)(x+2)(4-x) (5-x) (6-x) となるね。 花子:xの式が6個かけ算されているのね。このうちの2つずつを組合せて少し整理でき ないかな。 例えば, X = x(4-x) とおいてみるとか。 太郎 : 確かにそのようにおくと, 整数nに対して, (x+n)(n+4−x) = X +n² + ア となるから, 例えば,n=1のときは, (x-1)(イ-x)=x-ウ エ になるね。 花子:そうね。これで二つの整式A, BがXを使ってもう少し整理された形になるね。 下線部について,整式B を X で表すとエ の解答群 12 | 数学 Ⅰ X(X + 1)(X + 2) X(X + 5)(X + 12) 4 (X + 1)(X + 4)(X + 9) n となる。 X(X + 1)(X + 4) (X + 1)(X + 2)(X + 3) (X + 1)(X + 5)(X + 12) (2) 花子 : x = 2+ X だから B だとわ 太郎 : (b)に一 だね A= A = 12 t 0 1 ④2

回答募集中 回答数: 0
数学 高校生

左下の🟥で囲ったとこなんですが=がついてるのは何故でしょうか? 左上の🟦が示せているので=はつかないと思ったのですが。 よろしくお願いします。

an²+3 4 (n=1, 2, ……) で定義される数列{an}について a1=0, an+1 (1) 0≦an<1が成り立つことを,数学的帰納法で示せ. 1-an (2) 1-an+1< が成り立つことを示せ . 2 (3) liman を求めよ. n→∞ 1 2n-1 解けない2項間漸化式と極限 簡単には一般項を求めることができない2項間の漸化式 an+1= f(an) で定まる数列の極限値を求める定石として,以下の方法がある. an の極限が存在して,その値がαならば, lima,=α, lima,+1=α であるから, αはα = f(α) を 1° 満たす.これからαの値を予想する. 2°与えられた漸化式 an+1=f(a) と α = f(α)の辺々を引くと, an+1-α=f(a) - f(α) となる が,これから, |an+1-α|≦k|an-αl, kは 0≦x<1である定数・ の形の不等式を導く. すると,|an-al≦klan-1-al≦k2|an-2-al≦..≦kn-1|a-a| 0≦an-a|≦kn-1|α-a| limkn-1|α1-α|=0であるから, はさみうちの原理により, an-α|→0 n→∞ · ≤ak+1<- 解答量 (1) n に関する数学的帰納法で示す. n=1のときは成立する. n =kでの成立,つまり0≦x<1が成り立つとすると,k+1 について, 02+3 12+3 .. 0≦ak+1 <1 4 よってn=k+1のときも成立するから, 数学的帰納法により示された. an²2+3 1-an² 2 1+ an (2) 漸化式から, 1-an+1=1-- (1-an) 4 4 4 (1)により tan1+1=1/21-0,>0であるから, 4 = 1-a₂+1 <1/12/2 (3) 1-a>0と、① を繰り返し用いることにより, 01-an</(1-an-1) 22 (1-0₁-2) <... < ・(1- 2² (なお、要点の整理・例題 (8) からのkは定数でないと, an→α とは結論できない) -(1-an) (1 n→∞ 2n-1 n→∞ (1−1)=1 →0より, はさみうちの原理から lim (1-am) = 0 n→∞ HAS 2n-1 liman=1 118 (岡山県大情報工-中 an→α (n→∞) 0≦x<1のとき,02≦ak2/12 漸化式を用いて 1-an+1 を an 表す. a= 本問の場合、求める極限値を として, 1° を使うと, a²+3 4 からαの値が予想できる. ∴.α=1,3

解決済み 回答数: 1
1/3