学年

教科

質問の種類

数学 高校生

解答の右のページの1番上に変えてあるanはどうやってこうなるんですか?

基礎問 WINDOW 128 和と一般項 数列{an} の初項から第n項までの和 Sn が で表されている. Sn=-6+2n-an (n≧1) (1) 初項 α1 を求めよ. (2) am と an+1 のみたす関係式を求めよ. (3) an をnで表せ 数列{an} があって 精講 an= ? n = 1 ½ an-1+1 (n≥2) よって, an+1= =an+1 (n≧1) 食 197 PROMOSI (別解) ①より, Sn+1=-6+2(n+1)-an+1 ...... ② ②① より, +1 Sn=2-an+1+an .. an+1=2-an++an 1 : an+1=an+1 2=1/12 (42) a = 1/24+1の解 =1/12an+1よりan+1-2= (3) an+1= また, a2= -4 だから 1\n-1 第7章 a+a2+…+an=Sn とおいたとき, an と Sn がまざった漸化式がでてくることがありま す。 このときには次の2つの方針があります。 I.an の漸化式にして, annで表す Ⅱ. S の漸化式にして, Sn を nで表し, an をnで表す このとき,III どちらの場合でも次の公式が使われます。 n≧2 のとき, an=SnSn-1, a1=S1 (n=1のときが別扱いになっている点に注意) 解答 Sn=-6+2n-an (n ≧1) ...... ① (1) ① に n=1 を代入して, Sanまでの 1和だから supaほどの和 ということだが S=-6+2-a _a=S, だから, a=-6+2-a1, 2a=-4 m 珍しい a₁=-2 (2) n≧2 のとき, ①より, Sn-1=-6+2(n-1)-αn-1 :.Sn-1=2n-8-α ...... ② ①-②より, Sn-Sn-1=2-an+an-1 :.an=2-an+an-1 an-2-(-4)() | 4 an-2-2-1 2-12- α=2を利用し an+1-α=- 1 2-3 と変形 ●ポイント(すなわち,和) のからんだ漸化式から記号を消 したいとき,番号をずらしてひけばよい 注 ポイントに書いてあることは,に書いてある公式を日本語で表した ものです.このような表現にしたのは、 実際の入試問題はの公式の形 で出題されないことがあるからです。 (演習問題 128 (2)) 士)の子 演習問題 128 Sn-Sn--an (74) 53-52=03 (1) 数列{a} の初項から第n項までの和 S が次の条件をみたす. S1=1, Sn+1-3S=n+1 (n≧1) (i) S を求めよ. (ii) a を求めよ. (2) a1=1,2kan=nan(n≧1) をみたす数列{az} について,次 の問いに答えよ. (i) anan-1 (n≥2) T. (ii) a を求めよ.

解決済み 回答数: 1
数学 高校生

赤線て引いた、「3^n-1分の1」のところがΣに入らないのはなぜですか?

■構造異 示す化 て水素を も低い。 ロ化す. た ②3 し、 Do-12. ・K) おの1 =35.21 とこ た。 を与え 与え 高3入試問題演習 n(n≧2)人で1回だけジャンケンをする。 勝者の数をXとして、次の各問に答えよ。 (1) kを1≦k≦n である整数とするとき, kinCan-1C-」 を示せ。 (2) X=k(k=1,2, .n-1)である確率を求めよ。 (3) X = 0, すなわち勝負が決まらない確率を求めよ。 (4) Xの期待値を求めよ。 (2) (3)₁ n! (n-1)! (1) knCh=k•• (n-k)!k! =n{(n-1)-(k-1)}!(k-1)! -= n*n-1Ck-1. (1) 2n人から1人のリーダーを含むん人のメンバーを選ぶ方法として, (i) n人から人のメンバーを選び, その中から1人のリーダーを選ぶ、 (ii) 人から1人のリーダーを選び, 残り (n-1) 人から残りの (k-1) 人の xンバーを選ぶ, という2つの方法がある. nCh*nC₁=nC1°n-1Ck-1 knCk=n*n-1Ck-1. P(X=k)= "Ch¹³C₁=C₁. (1≤k≤n-1) nCk 3" 3- P(X=0)=1-P(X=k)=1-31-1nCr 3-1-2+2 =1-3-1 ((1+1)"-nCo-nCn}=-= 3n-1 (3)2人で1回ジャンケンをするとき, 手の出し方は次の3通り. (i) n人が1種類だけの手を出す. または (ii) n人が2種類だけの手を出す. ··· 3C2 (2”-2). () n人が3種類の手を出す. X = 0 は, (i), (i), の和事象だから P(X=0)=- ... 3C1. 0 it (ii) の余事象だから ...3"-3C1-3C2 (2"-2). 3+(3-3.2"+3) 3" = この書き換えを kima 3-1-2"+2 3-1 しっかり考える ~CK XK(+)! = (t-1)! ( n! (ヒーリン (K-1) レッ

解決済み 回答数: 1
数学 高校生

こういうちょっと違う筋の問題はどうすれば初見で解けますか?あとなぜACはsinではなくtanですか?

保法 a 2) 0 157 円周率π に関する不等式の証明 円周率に関して,次の不等式が成り立つことを証明せよ。 ただし, は使用しないこととする。 r=3.14...... 3√6-3√2<x<24-12√3 mm Je 各辺の差を考える方法では証明できそうにない。 そこで, 各辺に同じ数を掛けたり 各辺を同じ数で割ることを考えてみる。 0 点0 を中心とする半径1の円において, 中心角が- の扇形OAB を考える。 点Aにおける円の接線と直線 OB の交点をCとすると, 面積について ゆえに 各辺を12で割ると は p.243 基本 例題150 (1)で求めた sin 15° の値であることをヒントに, 下の解答のような、中心角 の扇形に注目した図形の面積比較が浮上する。 12 よって ここで ゆえに √6-√² <12<2-√3 4 tan △OAB <扇形 OAB < △OAC π π 1/12.1.sin/11/12/11/11/12・1・tan 1/12 π sin <12<tan 12 12 sin 72=sin(4-4) UNT 12=tan(-4)= √6-√2 4 π 12 π = sin π 4 COS tan-7- -tan tan- 4 ここで, π 6 π [ 1 + tan Stan 加法定理 π 6 π π 12 = -cossin 1 √√6-√2 4 T 1+1.- 46 [大分大] π √√3 ・基本 150 = 「扇形の面積がを含む数 になることも、面積比較の 方法が有効な理由の1つ。 C tan √6-√2 4 253 12 ・<2-√3 すなわち 3√6-3√2<x<24-12√3 la 3.1063.215 √3-1-2-√3 √3+1 (0) 180 求めにくい値を不等式を使って評価する 値が具体的に求められないもの(Pとする)については、上の解答のように,不等式 ●<P<■を作ることができれば、おおよその値を調べられる。このような不等式を作っ て考える方法は,数学における重要な手法の1つである。 特に, 数学Ⅲではよく使われる。 <Cを直角とする直角三角形 ABCに対して, ∠Aの二等分線と線分BCの交点を _Dとする。 また, AD = 5, DC = 3, CA=4であるとき, ∠A=0とおく。 (1) sineの値を求めよ + Flas 4章 4 25 加法定理の応用

解決済み 回答数: 1
1/14