学年

教科

質問の種類

数学 高校生

全くわかりませんできれば明日までに回答が欲しいですおねがいします。

A2 20人の生徒に10点満点の数学のテストを行った。試験当日1人の生徒が欠席したため、 19人の生徒が受験し、19人の生徒が受験したテストの得点の平均値は5(点),分散は4で あった。 後日、欠席していた1人の生徒がこのテストを受験したところ、 得点が7点であった。 太郎さんと花子さんは、今回のテストの得点の分散について会話をしている。 2人の会話 を読み、 以下の問いに答えよ。 ただし, テストの得点は整数とする。 太郎: 受験者が1人増えたから,分散の値も変化するよね。 花子:そうだね。 でも、20人の受験者全員の得点がわからないから,どうやって求め たらいいかな。 太郎 次のようにして求めるのはどうだろう。 <太郎さんの解答> 試験当日にテストを受けた19人の受験者の得点をx (1≦x≦19, nは自然数)と おく。 試験当日にテストを受けた19人の受験者の得点の平均値が5, 分散が4であ るから {(x1-5)+(x2-5)+…+(x19-5)^= 4D すなわち (x1-5)+(x2-5)+…+(x19-5) 76...... ② よって、 20人の受験者全員の分散をVx とすると V2= 2l(x1-5)2+(x2-5)+…+(-5)+(7-5)2 =2/10(764) ......④ =4 花子: <太郎さんの解答> には誤りがあるよ。 (ア) がおかしいよ。 太郎: そうか。じゃあ、どうすればいいのかな。 花子: 分散は,(分散)=(x^2の平均値)(xm の平均値)? を利用して求めることができ るから、試験当日にテストを受けた19人の受験者の得点x (1≦x≦19 n は自 然数)について, (xm² の平均値) を求めることにより、 20人の受験者全員の得点 の分散を求めることができないかな。 (1) 試験当日にテストを受けた19人の受験者の得点の標準偏差を求めよ。 また, 花子さん が誤りを指摘した (7) に当てはまるものを,次の1~4のうちから1つ選び、番号で 答えよ。 1 ①立式 2 ①から②への式変形 3 ③ 4 ③から④への式変形 (2)19, nは自然数) の平均値を求めよ。 また, 20人の受験者全員の得点の 分散 Vs を求めよ。 (配点 20 )

回答募集中 回答数: 0
数学 高校生

この問題の2ページ目で、何故?と書いてある部分の解説をお願いいたします🙇🙏🙌 誤っている理由は方針を読めばわかるのですが、多い少ないの判断はどこからすればいいですか、? 進研模試IA19ページ

(4) 太郎さんと花子さんはこのデータを見ながら、自分たちの住んでいる町の気候 について話している。 数学Ⅰ 数学A 次の表は20枚の硬貨を投げる試行を1000回行ったときの表の出た枚数の 合である。 太郎: 自分たちの町では2月の平均気温は7℃で、8月の平均気温は27℃だそ うだよ。 表の枚数 0 1 2 3 45 6 7 89 割合(%) 0.0 0.0 0.0 0.1 0.4 1.6 3.7 7.5 11.9 16.1 花子:冬と夏の気温差が小さいんだね。 この町の人の多くは、 自分たちの町が 気候的に暮らしやすい町だと感じているんじゃないかな。 太郎:アンケートをとって確かめてみよう。 この町の人20人に,この町が気 候的に暮らしやすいと感じているかどうかをたずねたとき、 何人の人が 「暮らしやすいと感じている」と回答したら,この町全体で暮らしやす いと感じている人の方が暮らしやすいと感じていない人より多いとし てよいのかな。 花子 例えば15人だったらどうかな。 表の枚数 割合(%) 17.6 15.9 12.1 10 11 12 13 7.3 3.5 14 15 16 17 18 19 1.7 0.5 0.1 0.0 0.0 20 0.0 2.7 この表の値を用いると, 20枚の硬貨を投げて15枚以上が表となる割合は ハ ヒ %である。これを, 20人のうち15人以上が 「暮らしやすいと 「感じている」と回答する確率とみなし、 方針に従うと、「暮らしやすいと感じてい る」と回答する割合と 「暮らしやすいと感じている」と回答しない割合が等しい という仮説は フ この町は暮らしやすいと感じている人の方が暮らしやす いと感じていない人より 二人は, 20人のうち15人が暮らしやすいと感じている」と回答した場合に, 「自分たちの町では気候的に暮らしやすいと感じている人の方が暮らしやすいと 感じていない人より多い」といえるかどうかを, 次の方針で考えることにした。 方針 "自分たちの町に住んでいる人全体のうちで「暮らしやすいと感じている」と 回答する割合と「暮らしやすいと感じている」と回答しない割合が等しい” という仮説をたてる。 この仮説のもとで, 20人抽出したうちの15人以上が 「暮らしやすいと感じ 「ている」と回答する確率が5%未満であれば仮説は誤っていると判断し, 5% 以上であれば仮説は誤っているとは判断しない。 フ の解答群 誤っていると判断され ① 誤っているとは判断されず 群 ⑩多いといえる 多いとはいえない (数学Ⅰ. 数学A第2問は次ページに続く。)

回答募集中 回答数: 0
1/28