学年

教科

質問の種類

数学 高校生

なぜ1/n2乗 に nをかけているのでしょうか?

感本例題105 数列の極限(4)…はさみうちの原理1 183 OO0 COS nT を求めよ。 の) n 極限 lim n→0 1 11 とするとき, limanを求めよ。 2) an= n+1 n+2 っ2. n?+n する n→0 4章 p.174基本事項3 編限が直接求めにくい場合は,はさみうちの原理 の利用を考える。 14 針> 数 列 はさみうちの原理 すべてのn について anS CnS b, のとき 定形 lima,=lim b,=« ならば limc,=α (不等式の等号がなくても成立) 極 n→0 n→o n→0 限 COS nT どの (1) anS n <bnの形を作る。それには, かくれた条件 -1<cos0<1 を利用。 1 く THAH におき換えてみる。 1 (k=1, 2, ……, n) に着目して, anの各項を一 n?+k CHART 求めにくい極限 不等式利用で はさみうち 40 () 解答 1 COS nT 1 -1Scos nnハ1であるから (各辺をnで割る。 n n n 1 =0であるから 常に,。 COS nT lim n はさみうちの原理。 lim--)=0, lim- n→0 n n→o n ガ→00 n°+k>n°>0 1 2) n'+k n)であるから 1 1 1 an= n?+1 n°+2 n+n 1 1 1 4各項を一 でおき換える。 1 く n? *n= n n? n° n' 40SlimanS0 1 よって 0<anく- n -=0であるから liman=0 lim n→0 n→0 まっ 学ぶ n→o n 焼討はさみうちの原理を利用するときのポイント はさみうちの原理を用いて数列{cn} の極限を求める場合,次の ①, ② の2点がポイントとなる。 CnSC,Sb,を満たす2つの数列 {a.}, {b.} を見つける。 2つの数列 {a,}, {b.} の極限は同じ(これを αとする)。 なお, Oに関して, 数列 {an}, {bn} は定数の数列でもよい。 が 0, ② が満たされたとき 0 lim c,=α n→0 機習| 次の極限を求めよ。 105 (2n)0。 (p.197 EX79,80 (2) Him+1(n+2) 5よ 1 nπ -sin 2 n→0 n→0 n+1 1 1 (3) lim Vn+n Vn°+2 2 n+1 n→0 押着 を 入」 C10」 V:

未解決 回答数: 1
1/4