学年

教科

質問の種類

数学 高校生

シャープペンで指してるところの方法の求め方を教えて欲しいです💦 お願いします

So 基本 例題 106 直角三角形と三角比 図のような三角形ABC において,次のものを求めよ。 (1) sine, cos, tan (2) 線分AD, CD の長さ 00000 A W B D 60° p.174 基本事項 1. 重要 110 B 3 C CHART & SOLUTION 基本は直角三角形 暴行 (1)△ABCは∠C=90° の直角三角形であるから, 三角比の定義 (p.174 基本事項 1 ① ) から求められる。 三平方の定理を利用して, 辺 ACの長さを求めておく。 (2) 直角三角形 ADC において,∠ADC=60°の三角比を考える。 175 解答 BC 3 (1) cos = = AB 4 また, 三平方の定理から an AC よって sin0= √7 tan 0= AC=√42-32=√7 √7 AC = AB 4 BC 3 田 (2) 直角三角形 ADC において 13 AC AC sin 60°=- AD から AD=- A sin 60° D cos' mcl 2 AC AC tan 60°= から CD= = =√√√32√72√2104 √3 == 有理化しておく。 3 √7 √21 = AC²+BC2=AB² 5 AC=√AB²-BC² 08-09 (2) AD CD AC 2.1+2.18=0+0=2:1:√√3 から求めてもよい。 なお,最終の答は分母を CD tan 60° √3 3 I 2 POINT 30°, 45°, 60° = 右の表の三角比の値はよく使うの で必ず覚えよう。 0 30° 45° 1 1 sin 30° 444 2 2 1 √3 0203 COS 2 2 45° 60° 1 tan 1 13212 5 60° √3 PRACTICE 106º 右の図において、線分AB, BC, CA の長さを 求めよ。 A 4章 = 12 D 45° 30° B C 三角比の基本

未解決 回答数: 1
数学 高校生

数1A 集合の表し方ですが、⑵の解答解説を読んでもイマイチ理解できません。詳しく教えて下さい。

例題 145 集合の表し方(3) 20以下の自然数の集合を全体集合Uとして,次のUの部分集合 A, B, C, D の包含関係をいえ. A={n|nは3の倍数},B={n|nは6の倍数}, C={n|nは3の倍数または2の倍数}, D={n|nは3の倍数かつ2の倍数} (2) 全体集合をU={n|nは自然数, 1≦n≦6},Uの部分集合を A={a, a-3},B={2, a+2, 9-2a} とする. A∩B≠Ø, AD2 のとき,αの値を定め, A を求めよ. 方 (1) x∈P となるxが必ずxEQのとき,PCQ となり, PCQ かつ QCP のとき,P=Q となる. まずは,それぞれの集合を要素を書き並べて表す. (2) 与えられた条件に注目する. A∩B=Ø とは、 AとBの中に同じ要素があるということ. さらに, AD2 より, その要素は2ではないことがわかる. 287 89 ■解答 (1) A={3,6,9,12,15,18},B={6, 12, 18}より, BCA E={n|nは2の倍数} とすると, E={2, 4, 6,8,10, 12, 14, 16,18, 20} C=AUEDA Focus より、 D=ANE={6,12,18}=B よって, B=DCACC (2) U={1, 2, 3, 4, 5, 6} 6. (1+$)S=1+alx A={a, a-3},B={2, a+2, 9-2a} で, AUE A ●x A- ***11+ -B、 ** ・P. DANGERE 6. - 105X a-3<a<a+2, AD2 より, _A∩B={9-2a} (i)a=9-2a のときAキュ α=3 となり,このとき a-3=0 AD つまり, A={0,3} となるが, UD0 より不適. 素となる. (ii) a-3=9-2α のとき a=4 となり,A={4, 1},B={2,6,1} は、ともにの部分集合で, A∩B={1} よって,a=4,A={2,3,5,6} 歌 第4章 1 ≤ 058 150-356- 15072€ 6-8 19-206 a=a+2,0) a-3キα+2 であり、 2がAの要素でないの で, 9-2α が共通の要 集合の記号∈, C, n, U, , Ø, Uは使って覚えよう Uの要素は1から6ま での自然数 全体集合の中に入って いるか注意する。 A∩B≠Ø の確認

回答募集中 回答数: 0
数学 高校生

(2)の解説をお願いします!

, B, C を、 す。) 共通部分 は和集合 なので、 B ■点に注意する。 補集合 ので, (A∩C) っている. 例題145 集合の表し方 (3) OM ** (1) 20 以下の自然数の集合を全体集合ひとして,次のUの部分集合 A, B, C, D の包含関係をいえ. KRA £x 2 全体集合をU={n|nは自然数 1≦x≦6},Uの部分集合を A={a, a-3},B={2, a+2,9-2α} とする. A∩B=Ø, AD2 のとき, αの値を定め, A を求めよ。 考え方 (1) x EP となるxが必ずx∈Qのとき,PCQ となり, PCQ かつ QCP のとき,P=Q となる. A={n|nは3の倍数}, B={n|nは6の倍数}, C={n|nは3の倍数または2の倍数},sshiitaly (3) D={n|nは3の倍数かつ2の倍数} ( 1集合 解答 (1) A={3,6,9,12, 15, 18},B={6, 12, 18} より, BCA ={|nは2の倍数とすると TWIN) & E={2, 4, 6, 8, 10, 12, 14, 16, 18, 20} 卵より、 C=AUEDA 10211 集合D=ANE = {6,12,18}=B よって, B=DCACC まずは,それぞれの集合を要素を書き並べて表す. (2) 与えられた条件に注目する. Focus A∩B=Ø とは, AとBの中に同じ要素があるということ. さらに, AD2 より, その要素は2ではないことがわかる. (2) U={1,2,3,4,5,6} である。 &A={a, a-3}, B={2, a+2, 9-2a} , A∩B={9-2a} a-3<a<a+2, A2 Y. (i) a=9-2a のとき ABI α=3 となり,このとき, 1- dax▶a-3=0 (ii) a-3=9-2α のとき が成り立つa=4 となり, A = {4, 1},B={2, 6,1} は、ともにびの部分集合で, A∩B={1} よって, a=4,A={2,3,5,6} ●x -A- -B、 AUE A- P. ・Q E A={0,3} となるが, UD0 より不適. 素となる。 つまり, a=a+2, α-3キα+2 であり、 2がAの要素でないの で, 9-2α が共通の要 253 Uの要素は1から6ま での自然数 集合の記号 ∈, C, n, u, , Ø, Uは使って覚えよう 第4章 全体集合の中に入って いるか注意する. A∩B キØ の確認 1142 A B (1) (2 14 1

回答募集中 回答数: 0
数学 高校生

(2)d₁=,d₂=の式が分かりません この式は点と直線の距離の公式を使いますか?

13 楕円 双曲線の接線 一定値問題 直線!: mx+wy=1が、楕円C:+=1 (a>b>0) に接しながら動くとする。 9² 62 (1) 点(m,n)は楕円上を動くことを示し,その楕円の方程式を求めよ。 (2) Cの焦点F(-²62,0)と1との距離をふとし,もう1つの焦点 F2 (2-620) と (筑波大/一部変更) との距離をdとする. このときdd=bを示せ. IOI You 621 上の点 (No,yo) におけるCの接線の方程式は 02 62 である楕円の接線に関する問題では,まず接点を設定してこの公式を使う, という方針を考えよう。 ここで重要なのは 「(No, No)は v² ++ =1上の点だから 02 6² エロ + =1...☆ が成り立つ」 Q2 Yo 62 ということ、例題や演習題のような「接線についての一定値問題」では、接点を設定し, を使って文 字を消すのが基本的な流れである. 双曲線の接線の公式は, 楕円と形が同じ (符号が違うだけ)で, 接線の公式 #MC: 2 22 IOI Yoy -=1 1上の点(20) におけるDの接線の方程式は Q2 62 である (Dの式の右辺が1なら接線の方程式も右辺が-1). これも合わせて覚えよう. Q2 62 双曲線D: 解答量 (1) 1とCの接点を (πo, yo) とすると,Z: + -=1であるから, TOI yoy α2 b2 1: mix+ny=1と比較してm=- TO a², n=. (Toyo) はC上の点だから IO² 02 Yo 62 id:d2= yo=nb² を代入すると42m²+bx²=1………・・ ① となるので, (m,n)は 楕円α'x'+b2y²=1の上を動く. 30² + =1である. これに.ro = ma², (2) c=√²-6 ② とおく.Fi (c, 0), F2(c, 0) と 1: mx+ny=1の距離がそれぞれd, d2 だから, |mc-1| d₁=- |-mc-1| + d2= m²+n² m²+n² m²+n² |1-m2a²+m²621 m² +n² (1+mc) (1-mc)|_(1-mic²|_[1-m² (0²-62)| m² +n² m² +n² | b²n²+ m²b²| ___ b² (m²+n²) m² +n² m² +n² ++ □ (1) の原題は 「点(m,n) の軌 跡は楕円になることを示せ」で あった. (m,n)は (No, yo)を 軸方向に12倍,y 軸方向に a² -= 倍した点とみることができる. 62 このように考えると, (m,n) が 楕円全体を動くことが言え,さら にその楕円の方程式が (a²x)² ← ②を用いた. (by)2_ 62 すなわち+b2y²=1 と求めら れる. + -=1 ← ①より1-4²m²2²aを消去)

解決済み 回答数: 1
1/7