学年

教科

質問の種類

数学 高校生

統計的な推測 Zは近似的にN(0,1)に従うと書いてある場合と普通に ZはN(0,1)に従うと書いてある場合があります。 この二つをどう使い分ければいいのか教えてください。

基本例 例題 母平均 0. 88 大数の法則 - 555 00000 母標準偏差をもつ母集団から抽出した大きさんの標本の標本平均 ýが0.1以上0.1以下である確率 P(|X|≦0.1) を, n=100, 400, 900 の各場 合について求めよ。 指針 ・基本 80, p.549 基本事項 m=00=1であるから、標本平均又は近似的に正規分布 N (0, 1/2)に従う。 n=100, 400, 900 の各場合について, 正規分布 N(m,d')はZ=X-mでN(0, 1)へ[標準化] に従い, 確率 P (|X| ≦ 0.1) を求める。 O n=100,400,900 は十分大きいと考えられる。 解答 n=100 のとき,X は近似的に正規分布 N(0, 100) に X 従うから,Z= 1 10 とおくと, Zは近似的にN(0,1) に従う。 よって P(|X|≦0.1)=P(|Z|≦1)=2p(1) =2.0.3413 =0.6826 P(X|≦0.1) =P(0.1) =P(|Z|≦1) n=400 のとき,Xは近似的に正規分布 N0, に 400 X 1 20 従うから, Z= とおくと, Zは近似的にN(0, 1) に従う。 よって P(|X|≦0.1)=P(|Z|≦2)=2p(2) 2章 母集団と標本 ①~③ から, nが大きくな るにつれて =2•0.4772 =0.9544 n=900 のとき,X は近似的に正規分布 N(0, 900 1 に 検討 ☑ 従うから, Z=- とおくと, Zは近似的に N(0, 1) 78.0 30 に従う。 よって P(|X|≦0.1)=P(|Z|≦3)=2p(3) =2.0.49865 =0.9973 ③ P(X|≦0.1) が1に近づくこと,すなわ 大数の法則が成り立つ (標本平均 Xが母平均 0 に 近い値をとる確率が1に近 づく)ことがわかる。 練習 さいころを回投げるとき、1の目が出る相対度数を R とする。n=500, 2000, 88 4500の各場合について, PR--//sono) の値を求めよ。

解決済み 回答数: 1
数学 高校生

(1)の回答に書いてあるa<-2の時の表のaが関係する部分ってどうやって傾きがプラスかマイナスかがわかるんですか? また、解答の2の場合は特に、aの正負がわかりませんが、どうやって最小値がわかるんですか

● 12 絶対値つき関数/折れ線 (文字定数入り) f(x)=x+2|+|-3|+|x-a| とする. 次の問いに答えよ. (1) αを定数とするとき、関数y=f(x) の最小値をα を用いて表せ。 (2) (1) での最小値が6となるようなαの値を求めよ. (中部大・ 応用生物) 折れ線の増減は傾きで 前問で述べたように, f(x) の増減は,各範囲の傾きを追いかけることで とらえることができる。 前間で述べたように, y=f(x)のグラフは1本の折れ 折れまがる点のx座標の大小で場合分け 線であり,折れまがる点の座標は, x=-2, 3, αである. 前問の(1)から分かるように、折れまがる 点のいずれかで最小となる. よって,αと2,3との大小で場合分けが必要である. ■解答量 (1) αと2,3との大小で場合分けをする. 1° a<-2 のとき,a<x<-2の範囲では、3つの 絶対値の中身の1つが正で, 2つが負であるから, 絶対値記号をはずして得られる1次の係数(傾き) は-1である. 同様に各範囲について, 傾きを求 めると右表のようになるから, x=-2で最小値 をとる. よって, |-3|=-(x-3) |x-a|=r-a I a -2 3 a<x<2では, 傾き -3 -1 1 3 |x+2|=-(x+2) y -2 (a) 3 となる. m=f(-2)=0-(-2-3)+(-2-a)=3-a 2°-2≦a≦3のとき, 同様に=αで最小で, m=f(a)=(a+2)-(α-3)+0=5 y -1-120-2 3° 3 <αのとき, -2 <3 <αであるから, 同様にx=3で最小で, m=f(3)=(3+2)+0-(3-4)=α+2 x -2 a (2) (1)の1か3°のときである. よって, y )× 2 「α <-2 かつ3-46」 または 「3<a かつα+2=6」 α-3 または α=4 注 a=-2,α=3のときは,下のようになる. a=2のとき a=3のとき f(x) =2x+2|+|r-3| f(x)=|x+2/+2|z-3| I -23 I -2 3 傾き -3 1 3 傾き -3 -1 3 y y V 12 演習題(解答はp.27 ) a,b,cは定数でα<b<c を満たすものとする. 関数f(x) を f(x)=x-a|+|r-b|+|x-c|で定める。 (1)ェがすべての実数を動くとき, 4x+3f(x) の最小値を求めよ. 1+0-2 ←α=-2のときのグラフは下図. y+ 10- -5 0 3 (2)ェがすべての実数を動くときのf(x)の最小値が18で,f(c)=32のときb,cを で表せさらにf(-12)=25のときを求めよ. (上智大経) (1) 安直にェ=bで最 小としないように. (2) αを出すところも グラフを使いたい。 21

解決済み 回答数: 1
数学 高校生

生物得意な方お願いします。 数学力なのでしょうか、、、、。 系統樹の問題です。

問3 下線部(c) に関連して, たとえば, A~C種の3種で相同な遺伝子について DNAの塩基配列を比較した結果、 表1に示す違いがあった場合、 これにもと づいて系統樹を描くと、 図2のようになる。 図2の各枝の長さを示す数値は, 塩基配列の違い (%) を示す。 このような系統樹は無根系統樹とよばれ, 対象 とした3種が分岐してきた時間的な経緯は示していない。 図3中の ア および図4中の イに入る数値として最も適当な ものを,後の①~⑦のうちからそれぞれ一つずつ選べ。 ア 31 イ 32 表2 3種と外群 (D種) 間の塩基配列の違い (%) 表 1 3種間の塩基配列の違い (%) A種 B種 C種 B種 5 C種 7 6 C 図 2 A種 B種 C種 D種 18 17 16 む B A 48-017 図 3 D 根がつく A B C 図 4 APC ア の選択肢: ① 8.5 ② 10.5 ③ 12 ④ 13.5 ⑤ 15 ⑥ 16.5 ⑦ 17 無根系統樹に共通祖先とのつながりをつけ加え, 時間経過とともに各種が 分岐したようすを示したものは有根系統樹とよばれる。 無根系統樹から有根 系統樹をつくるにはいくつかの方法があるが、 外群(対象となっているどの種 よりも前に, 共通祖先から分岐したことが明らかな種)を用いることが多い。 外群であるD種と, A~C種との塩基配列において, 表2に示す違いがあっ た場合, 図3のように, D種に伸びる枝は, C種に伸びる枝の途中につなぐこ とができる。 さらにこれらの共通祖先とのつながりをつけ加えると,A~ C種 およびD種の共通祖先につながる線 (つまり根) は,A~D種のうち, 最 初に分岐したはずであるD種に伸びる枝の途中のどこかにつくことになる。 そして図3を変形することにより, 図4のような有根系統樹ができる。 ⑤ 2.5 イ の選択肢: 0.5 ②1 ③ 1.5 ④ 2 ⑥ 3.5 ⑦ 4 181716

解決済み 回答数: 1
1/8