学年

教科

質問の種類

数学 高校生

コとサがそれぞれ4番、8番になるのですがなぜですか?

ある工場で作られた牛乳の容量は 1000 mL と表示されている。この牛乳 4本を無作為に抽出し牛乳の容量を計 測したところ。 平均は1001.6mL, 標準偏差は 10.0mL であった。 この調査結果から牛乳の容量は表示通りではない と判断できるか、有意水準 5% で両側検定を以下のように行った。空欄に当てはまる最も適切なものを答えよ。 1234 100.6-1000 ただし、ア と ウに同じ語句を書いた場合はどちらも不正解とする。 また、空欄 は下の選択肢から選 3あ び、番号で答えよ。 正規分布工(値) z= オ (値)※値を求める途中の式でも可 力(X を含む式) とおくと,Zは標準正規分布 N(0, 1) に従うと見なせる。 両側検定を行うから,キ(Xを含む方程式または不等式) P(12123.2)=2(as-u(3,2)=0.00138 この工場で作られた牛乳の容量の平均をm(mL)とし、 (mの式) ウ(漢字二字) ア(漢字二字) 仮説を 400は十分大きいので、イのもとでの標本の大きさ 400 の標本平均は、 仮説を≠1000 とする. 文-1000 に近似的に従うから、10 de 2-10 2x-2000 となる確率p を求めると、 P => ク(値) となり,p (記号) 0.05 が成り立つので,ア 仮説は A 1 2003,2-2000 =32 よって、この標本調査の結果から, 牛乳の容量は B 次に、この問題を以下のように棄却域を考えることによって検定することもできる。 両側検定における有意水準 5% の棄却域は, P コ 0.95 であることを利用して, サ と表せる. 3.2 X=1001.6 のとき,Z= シ(値) となり、この値は棄却域に ス から,ア 仮説はA よって、この標本調査の結果から牛乳の容量はB コ サ の選択肢(同じものを繰り返し選んだ場合は両方とも不正解とする) 1 Z ≤ 1.64 2 Z ≤1.96 3|Z 1.64 4 Z ≤ 1.96 5 Z ≧ 1.64 6 Z≥1.96 7 || 1.64 8 |Z≥ 1.96

回答募集中 回答数: 0
数学 高校生

F1-152 オレンジの蛍光ペンを引いているところがわかりません。どなたかよろしくお願いします🙇‍♀️

例題 152 散布図と相関係数(2) ***** 1 データの整理と分析 299 右の図は、8人の生徒に行った英 単語の綴りと意味を問うテスト (と もに10点満点)の得点の散布図で, 綴りの得点を横軸に、意味の得点を 縦軸にとったものである. 味 6 109876 10- 点の分散はとも ( √10 |x8-{(3-6)2+(5-6)2} =18_9 +{(4-6)²+(4-6)²)] 8 4 点 5- (1) 次の表は、8人の生徒の出席 番号,綴りと意味の得点をま とめた表である. 空欄をうめ, 表を完成させよ. 4F 9 V4-2 3 したがって, 変更後の綴りの標準偏差は, (点) 88 1 0! 変更後の綴りと意味の得点の共分散は 11×8-{(3-6) (6-7)+(5-6)(6-7)} 2 3 45 花の香 6 7 8 9 10 綴り(点) 5 = 8 出席番号 1 2 3 4 5 6 7 8 平均値 綴り (点) 3 65865 意味(点) 6 86678 √3 5 R= × 5√3 8 2 6√3 18 +{(4-6)(6-7)+(4-6)(6-7)] よって, 変更後の綴りと意味の相関係数は, 分散や共分散を最初から計算 し直してもよいが、ここでは 変更前と変更後で平均値が同 じであることを利用して、 計 算量を減らしている. // ((変更前の綴りの分散)×8 (変更箇所の変更前の綴り の偏差平方の和) +(変更箇所の変更後の綴り の偏差平方の和)} 8 (変更前の共分散)×8 (変更箇所の変更前の 偏差積の和) +(変更箇所の変更後の 偏差積の和)} (2)この8人の綴りと意味の得点の標準偏差がそれぞれ10 √3 5 8 A, 2 2 点で,共分散が である. 綴りと意味の相関係数を求めよ. (3) 意味の採点にミスはなかったが, 綴りの採点にミスがあり, 出席番 号1と5の生徒の綴りの点数がともに4点に変更された. 変更後の 綴りと意味の相関係数 R を求めよ. 練習 右の図は、8人の生徒に行った漢字の 152 読み書きを問うテスト(ともに10点 ** 考え方 (3) 変更後の綴りの標準偏差と, 綴りと意味の共分散を求める. 満点)の得点の散布図で, 読みの得点 を横軸に,書きの得点を縦軸にとった その際,綴りの平均値は, 変更前と変更後で同じである点に着目する. ものである. 書き(点) 解答 (1) (1) 出席番号 1 2 3 4 5 6 7 8 平均値 綴り(点) 37 8 6 5 8 6 5 6 次の表は、8人の生徒の出席番号, 読みと書きの得点をまとめた表で ある.空欄をうめ, 表を完成させ 19876543210 意味(点) 67 8 6 6 7 8 8 7 よ. (2)r= √10 /3 × 2 32綴 5 √30 Sxy 出席番号 12 3 4 5 6 7 8 平均値 = 2√30 12 SxSy (3) 変更前と変更後の綴りの点数を表にすると、次のよ うになる。 読み(点) 38 3 7 5 書き(点) 2 453 95 出席番号 12345678 平均値 末田県 土 綴り(変更前) 3 7 8 6 5 8 6 5 綴り (変更後) 4 7 8 6 4 8 6 5 6 6 変更後の綴りの平均値は, 変更前と変わらない. 変更後の綴りの得点の分散は, 第 5 章 123 4 5 6 7 8 9 10 読み(点) (2)この8人の読みと書きの得点の標準偏差がそれぞれ、3点 15 分散が である. 読みと書きの相関係数を求めよ. 8 19 点で 共 2 (3) 読みの採点にはミスがなかったが, 書きの採点にミスがあり, 出席番号1. 2,3,4の生徒の書きの点数がそれぞれ1点ずつ加算された, 変更後の読み

解決済み 回答数: 1
1/20