学年

教科

質問の種類

数学 高校生

集合と命題です (2)のAかつBが9-2aとなる理由が分かりません ご回答よろしくお願いします

Think 例題 90 集合の表し方(2) 1集合 181 **** ① 20以下の自然数の集合を全体集合ひとして,次のUの部分集合 A, B,C,D の包含関係をいえ=ア A={nnは3の倍数}, B={nnは6の倍数}, 2 C={n|nは3の倍数または2の倍数 D={n|nは3の倍数かつ2の倍数 } (S) 80A D ②2 全体集合をU={n|nは自然数, 1≦n≦6}, Uの部分集合を A={a, a-3}, B={2, a+2, 9−2a} とする. A∩BØ, AD2 のとき,αの値を定め、 A を求めよ. 考え方 (1) xEP となるxが必ずxEQ のとき,PCQ となり, 解答 PCQ かつ QCP のとき,P=Qとなる. まずは,それぞれの集合を要素を書き並べて表す. (2) 与えられた条件に注目する。 A∩BØ とは, AとBの中に同じ要素があるということ さらに,AD2 より,その要素は2ではないことがわかる。 (1) A={3,6,9,12,15,18}, B={6, 12, 18} より, BCA E={n|nは2の倍数} とすると, ●x A -B、 ·Q· 第3章 (ax> AB AUE を見つ E= {2,4,6,8, 10, 12, 14, 16, 18, 20} C=AUEDA より、 D=ANE={6,12,18}=B よって, B=DCACC (2) U= {1,2,3,4,5,6} である. A={a, a-3}, B={2, a+2,9−2a} で, a-3<a<a+2,A2 より, (i) 9−2a=a のとき A∩B={9-2a} なぜ? a=3 となり,このとき, (S>21- a-3=0 6の要素のうち、Aの 要素となり得るのは、 92aのみ a-3<a<a+2 より, a+2=α, a-3 全体集合の要素は1 つまり, A={0, 3} となるが,U0 より,不適. から6までの自然数で (ii) 9−2a=a-3のとき α=4 となり, A={4, 1}, B={2,6,1} はともにUの部分集合で, A∩B={1} QUINA よって、 a=4,A={2,3,5,6} (0) あり,AとBの要素が ひの中に入っているか 注意する. AnB≠Ø の確認 (

未解決 回答数: 1
数学 高校生

ここで=を含まないのはなぜですか?

重要 例題 148 三角方程式の解の存在条件 0 の方程式 sino+acos0-2a-1=0を満たす 0 があるような定数a 00000 この値の範 基本145 囲を求めよ。 指針 まず 1種類の三角関数で表す →→ cos0=xとおくと, -1≦x≦1 で、与式は 解答 (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0 ① よって、 求める条件は, 2次方程式 ① が -1≦x≦1の範囲に少なくとも1つの解をも つことと同じである。 次の CHART に従って、考えてみよう。 2次方程式の解と数々の大小 グラフ利用 D, 軸, f(k)に着目 COS=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a1= 0 すなわち x2-ax+2a=0... ① この左辺 f(x) とすると, 求める条件は方程式 f(x)=0 1≦x≦1の範囲に少なくとも1つの解をもつことで ある。 THE 検討 x2ax+2a=0をαにつ いて整理すると x=a(x-2) (0-200-J)-よって, 放物線y=xと これは, 放物線y=f(x) とx軸の共有点について 次の [1] または [2] または [3] が成り立つことと同じである。 [1] 放物線y=f(x)が-1<x<1の範囲で, x軸と異な る2点で交わる, または接する。 このための条件は、 ① の判別式をDとすると D≧0 a(a-8)≥0 D=(-a)2-4・2a=a(a-8) であるから 直線y=a(x-2) の共有 点のx座標が -1≦x≦1の範囲にある 条件を考えてもよい。 解 答編 p.147 を参照。 [1]\ YA よって a≤0, 8≤a ...... 中 <a 軸x=1/2について 1</12 <1から -2<a<2… ③ + 20 1 f(-1)=1+3a>0から a> - 11/13 ④ 3 f(1)=1+α>0 から α>-1 [2] y4 1 ②~⑤の共通範囲を求めて <a≤0 3 + -1 [2] 放物線y=f(x) が-1<x<1の範囲で,x軸とただ 1 1点で交わり,他の1点はx <-1, 1<xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1) (a+1) <0 よって 1 -1<a<- [3] 放物線y=f(x) がx軸とx=-1またはx=1で交わ [=(0) 3 る。 f(-1) = 0 または f(1) = 0 から a=- 1 または α=-1 3 [1] [2] [3] を合わせて -1≤a≤0 ya 00: 1. 100 [参考] [2] [3] をまとめて,f(-1)f(1) ≧0としてもよい。 練習 0 の方程式 2cos20+2ksin0+k-5=0を満たすのがあるような定数々の値の ④ 148 囲を求めよ。

未解決 回答数: 0