学年

教科

質問の種類

数学 高校生

この問題の解き方が解説見ても全く分かりません😭 まず1/2とか3C2がどこから出てきた数字なのかが分かりません。 [1]と[2]の違いは何ですか? Pを通らない時の場合は求めないんですか? 教えてください🙇‍♀️🙇‍♀️

重要 例題 50 平面上の点の移動と反復試行 右の図のように、東西に4本, 南北に4本の道路が ある。 地点Aから出発した人が最短の道順を通って 地点Bへ向かう。このとき,途中で地点Pを通る確 率を求めよ。 ただし,各交差点で,東に行くか, 北 に行くかは等確率とし,一方しか行けないときは確 率1でその方向に行くものとする。 CHART & THINKING 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 この理由を考えてみよう。 は、どの最短の道順も同様に確からしい場合の確率で,本問 は道順によって確率が異なるから, A→Bの経路は同様に 確からしくない。 例えば, AP11B の確率は 12/2×/1/2×1/1/2×1/2×1×1=1/16 4C3X1 から, ax1 とするのは誤り! 6C3 P RACTICE 50 ③ 解答 右の図のように,地点 C C', P'をとる。 Pを通る道順には次の2つの場合があり,これらは互いに AN-RANT 排反である。 [1] 道順A→C→C→P→B この確率は 12/3×1/12/3×1/12/1×1×1×1=1/ [2] 道順A→P′→P→B この確率は sc (1/2)^(1/2)×1/1/1×1×1= よって, 求める確率は 1 35 + 8 16 16 |= 8 AP11B の確率は 1/2 ×/×/1/1×1×1×1=1/3 8 よって,Pを通る道順を, 通る点で分けたらよいことがわかるが,どの点をとればよいだろ うか? 3 1016 0000 A ③ 基本48 P' P B B B ○には2個と11個 が入る。 はない A C' C C→Pは1通りの道順であ ることに注意。 [1] →→→↑↑↑と進む。 [2] ○○○↑↑と進む。 北4

回答募集中 回答数: 0
数学 高校生

この 10c4という計算は10c6にはならないんですか?ならないとしたらなぜでしょう。nCr🟰nCn-rと私は習いました。

でで ご購 白チ・ ■基 基本 解説 に な生 コード! 例量 シ [追加] スモ 1 344 例題 準 34 余事象を利用した確率 (順列・組合せ利用) い確率を求めよ。 (2) 赤球4個と白球6個が入っている袋から同時に4個の球を取り出すと (1) 5枚のカード a, b, c, d, e を横1列に並べるとき, baの隣になら 取り出した4個のうち少なくとも2個が赤球である確率を求めよ。 CHART GUIDE 余事象の利用 〜でない, 少なくとも~ には余事象の近道あり 求めるのは, (1) baの隣になる場合 (2) 赤球が 0 個または1個の場合 確率である。 P(A)=1-P(A)=1- 5! 通り (1) 5枚のカードの並べ方は 「bがaの隣にならない」という事象は「bがaの隣になる」 という事象 Aの余事象A である。 aとbのカードをひとまとめにして, 1枚のカードと考える 4通り と、これと残りの3枚との合計4枚の並べ方は 4! 通り そのどの場合に対しても, ひとまとめにした2枚のカードの 並べ方は 2! 通り よって 求める確率は 4!×2! 5! 2・1 5 ·=1-- 本例題10.16.30 313> 5 =210(通り) (2) 球の取り出し方の総数は 10C4= 「少なくとも2個が赤球」 という事象は 球が0個または 1個」という事象 Aの余事象A である。 [1] 白球を4個取り出す場合 6C4=6C2=15 (通り) [2] 赤球を1個,白球を3個取り出す場合 4 C1 X6C3 = 80 (通り) [1],[2] は互いに排反であるから、赤球が0個または1個で ある場合の数は 15+80=95 (通り) 10・9・8・7 4・3・2・1 よって 求める確率は P(A)=1-P(A)=1- 95 23 210 42 の余事象の 0 000 2! 通り 残り3枚 ◆余事象の確率 少なくとも2個赤 | : 4 白 : 0 赤: 3, 白 : 1 赤 2, 白:2 赤: 1:3 赤: 0, 白 : 4 ◆ 余事象の確率 基 本 例題 35 CHART & GUIDE 100 枚の札 札を引く」 ANBは 互いに 余事象 1から100 が3の倍数 100 枚の 象をA, と 求め ここで, A={ ANE TRAINING 34③ (1) A,B,C,D,E,Fの6人が輪の形に並ぶとき, AとBが隣り合わない確率を求 め。 [類 神奈川大 ] (2) 赤玉5個、白玉4個が入っている袋から, 4個の玉を同時に取り出すとき、取り出 した玉の色が2種類である確率を求めよ。 である: したが Le 確率 PC [1] [2] [1] は 分がな したた ANE TRA 「た 1 あ

回答募集中 回答数: 0