学年

教科

質問の種類

数学 高校生

どうして青丸の部分は×になるのですか?? 私は間違えて足してしまいました🫠

例題 200 加法 →例題199 1から9までの数字を書いた 9 枚の番号札がある。この中から同時に3枚の 札を取り出すとき, 数字の和が奇数になる確率を求めよ。 Action 何通りかある事象は、排反事象に分けて考えよ 解法の手順・ ・1 | 数字の和が奇数になる場合を考える。 2それぞれの場合の確率を求める。 3加法定理を利用して、 確率を求める。 ....... 解答 9枚の番号札から3枚を取り出す場合の数は Cg 通り 取り出した3枚の札の数字の和が奇数になるのは,次の2つ の場合がある。 (ア) 3枚とも奇数の場合 (イ) 1枚が奇数で2枚が偶数の場合 (ア),(イ) の事象をそれぞれ A, B とすると,確率を求める事象 は AUB である。 (ア)事象 A が起こるのは、5枚の奇数から3枚を取り出すと きであるから,その確率は 5 C3 5 9 C3 42 (イ) 事象 B が起こるのは, 5枚の奇数から1枚と,4枚の偶 数から2枚を取り出すときであるから, その確率は P(B) = 5C1 X C2 15 9 C3 42 A,Bは互いに排反であるから、求める確率は one of ................ P(AUB)=P(A)+P(B) = P(A) = 5 15 10 + 42 42 = 21さん 12 = 9.8.7 19C3 = 84 3・2・1 和が奇数になるのは,こ の2通りで,同時には起 こらない。 = 奇数は 1,3,5,7,9の 5枚 偶数は2, 4, 6,8の4枚 約分せずにP(A) の分母 裏参脚を転泡とそろえておく。 AとBが同時に起こ ることがない。

回答募集中 回答数: 0
数学 高校生

この解説を見せて頂けませんか? 出来れば明日までに知りたいです! 重要問題演習38P,60.61

38 箱の中に10本のくじが入っており、そのうち3本が当たりくじである。 このくじを10人が1本 つ順に引くとき,次の確率を考える。 ただし、引いたくじはもとに戻さないものとする。 RIPRE ① 3番目の人が当たりくじを引く確率 ②7番目の人が当たりくじを引く確率 ③ 3番目の人と7番目の人が当たりくじを引く確率 ア ナ (1) まず, ①について考える。 1番目 2番目 3番目にくじを引く人が当たりくじを引く事象をそれ ぞれA, B, C と表し, P(C) の値を求めよう。 P(A)= イウ P(A∩B∩C)= 難易度 ★★★ 引く条件付き確率はPA(B) = 引いたとき, 3番目の人も当たりくじを引く条件付き確率は PanB(C) = カ キ の解答群 である。 また,1番目の人が当たりくじを引いたとき, 2番目の人も当たりくじ 0 10 C3 コの解答群 9C₂ ア ウ 9P2 目標解答時間15分 × ① 10P3 エ オ である。 ①について, 左から3番目に当たりくじがある並べ方は 人が当たりくじを引く確率は ク ケコ I である。さらに、1番目と2番目の人がともに当たりくじを カ SELECT SELECT 90 60 ある。 しかし、同じやり方で②,③を考えることは難しい。 そこで、 別の試行に置き換えて考える。 10本のくじをk1,k2, ......, kio と表すことにし,k1,k2,ks が当たりくじであるとする。この ■本のくじを横一列に並べる試行を考える。この試行において, くじの並べ方の総数は サ 通 シ通りあるから3番目 である。他の場合も同様に考えると,P(C) = である。 ② 10P7 ③10! であるから, ②39P2 ③ 9P7 ④ 39P7 ⑤9! ク 3.9! で コ (3) 当たりくじを◯, はずれくじを●で表すことにし、3個の○と7個のを横一列に並べる試行を 考える。○と●の並べ方の総数は ス 通りである。 ①について、 左から3番目に○がある並べ t 通りあるから3番目の人が当たりくじを引く確率は 方は ス ⑩ 10C3 Ł の解答群 率は ① 10P3 ② 10P7 ③10! の解答群 9C2 ① 9P2 ②3.9P2 ③ 9P7 4 3.9P₁ ク ケコ (2) (3) のいずれかの考え方を用いると、 ②について, 7番目の人が当たりくじを引く確率 ツ と求 [ニヌネノ である。 ソ は ■タチ めることができる。 (4) これまでの箱とは異なる箱に100本のくじが入っており, そのうち10本が当たりくじである。 このくじを100人が1本ずつ順に引くとき, 3番目 7番目 100番目の3人が当たりくじを引く確 ⑤ 9! ⑥ 3.9! である。 であり、③について, 3番目の人と7番目の人が当たりくじを引く確率は ■テト (配点 15) 38 43 <公式・解法集 35

回答募集中 回答数: 0
数学 高校生

数学Aの場合の数と確率です ここの95と96を回答を読んでもわからないです、 あと96の[1]回答の5C3がなんで5・4・3と4・3・2・1になるのですか、? 分かりやすく教えて頂きたいです、!

6 確率の基本性質 1 確率の基本性質 1. どんな事象についても 0≤P(A) ≤1 とくに空事象について P(Ø) = 0, 2. 確率の加法定理 事象 A,Bが互いに排反であるとき P(AUB)=P(A)+P(B) 事象 A,B,Cが互いに排反(どの2つの事象も互いに排反)であるとき、3つの事象 のいずれかが起こる確率P (AUBUC) は P(AUBUC)=P(A)+P(B)+P(C) 2 一般の和事象の確率 2つの事象A,Bについて 3. 余事象と確率 92 0 *93 0 94 *96 P(A)+P(A)=1 DOVA 全事象Uについて P(U)=1 P(AUB)=P(A)+P(B)-P(A∩B) すなわち □ P(A)=1-P(A) A問題 HOTEL 1個のさいころを投げるとき, 「奇数の目が出る」という事象を A,「素数の 目が出る」 という事象をBとする。 ◆教p.50 例 15 (1) 事象 A∩B, AUB を表す集合をそれぞれ求めよ。 (2) 確率P(A∩B), P (AUB) をそれぞれ求めよ。 00000000000000 1から10までの10枚の番号札の中から1枚引くとき、次の事象のどれとど れが互いに排反であるか。 ●教 p.51 事象A: 偶数の札が出る 事象 C: 6の約数の札が出る 事象B : 奇数の札が出る 事象D: 7 の札が出る ( 1等 2等、3等の当たる確率がそれぞれ 5 1030 100 100' 100 であるくじがあ 神 *95 白玉5個、赤玉6個、青玉1個の入った袋から, 2個の玉を同時に取り出す とき 2個とも同じ色である確率を求めよ。 ◆教p. 53 例題 4 る。このくじを1本引くとき、 次の場合の確率を求めよ。 ◆教p.53 例 16 (1) 1等または2等が当たる。 (2) 1等、2等, 3等のいずれかが当たる。 赤玉5個、白玉7個の入った袋から, 4個の玉を同時に取り出すとき,その 中に赤玉が3個以上含まれる確率を求めよ。 教p.53 例題 4 97 4枚の硬貨を同時に投げるとき,表が3枚以上出る確率を求めよ。 教p.53 例題 4 第1章場合の数と確率

回答募集中 回答数: 0
数学 高校生

チャート式の問題です。波線部のところがわかりません。6C3は、同様に確からしい場合の確率というのがなぜかわかりません。 どなたか教えてください🙇‍♀️

336 重要 例題 50 平面上の点の移動と反復試行 右の図のように、東西に4本,南北に4本の道路が ある。地点Aから出発した人が最短の道順を通って 地点Bへ向かう。 このとき,途中で地点Pを通る確 率を求めよ。 ただし,各交差点で,東に行くか, 北 に行くかは等確率とし、一方しか行けないときは確 率1でその方向に行くものとする。 CHART & T HINKING 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 2 12/×/1/23 X から, この理由を考えてみよう。 は、どの最短の道順も同様に確からしい場合の確率で,本問 は道順によって確率が異なるから, A→Bの経路は同様に 確からしくない。 例えば, A↑ →→→P↑↑B の確率は A→→→↑P↑↑B A→→→1P11B の確率は 12/3x/1/2×1/2×1×1×1=1/3 8 よって, P を通る道順を, 通る点で分けたらよいことがわかるが,どの点をとればよいだろ うか? 1 3 + 8 16 x 1/3×1×1×1=1/13 解答 右の図のように,地点 C C', P'をとる。 Pを通る道順には次の2つの場合があり,これらは互いに 排反である。 [1] 道順A→C→C→P→B この確率は [2] 道順A→P'′→P→B この確率は sca (12/12 (1/2)×1/1/2×1×1=16 3C₂ ) よって, 求める確率は 5 16 4C3×1 とするのは誤り! 6C3 8 3 16 B A ●基本48 B P' P A C' C |C→Pは1通りの道順で ることに注意。 [1] →↑↑↑ と進 [2] ○○○↑↑と進 ○には2個と1 が入る。

回答募集中 回答数: 0