学年

教科

質問の種類

数学 高校生

青の四角で囲んだ部分はどこから来たのですか?? 1つ上の式に√2/2をかけるところまでは理解出来たのですが、青四角の部分は何が起こったのかどなたかわかる方教えてください!!🙇‍♀️

DO 基本 例題 137 2次同次式の最大・最小 000 Yami sincos0 +2con" (002)の最大値と最小値を求めよ。 CHART I sin と cos & SOLUTION の2次式角を20 に直して合成 1-cos 20 2 sin20= L半角の公式 基本135 MOITUJO ZA TRAHD sin20 sinOcos0= 2 cos20= 1+cos 20 2 L2倍角の公式 半角の公式 これらの公式を用いると, sino, costの2次の同次式 (どの項も次数が同じである式) は 20の三角関数で表される。(は) 更に、三角関数の合成を使って, = psin (20+α) +α の形に変形し, sin (20+α) のとり うる値の範囲を求める。 08000nia S-0 200+(nie S-1aiz L の質は一般から f(0)=sin'0+sinOcos0+2cos2d 1-cos 20 sin 20 == 2 ・+2・・ 1+ cos 20 8=24 mie sind, cose の2次の同 次式。 0 _1 2 (は2とな 3 -1/2 (sin20+cos20) + 22 2 sin (20+4)+3 (1,1) 1H OS nie-08 π 02054 sin 20, cos 20で表す。 sin 20 と cos 20 の和 合成 4章 17 加法定理 π 1 x 0≤0≤ であるから 2 30 YA S ≤20+ 4 4 4 π 5 の糖 範囲に共 π かめられる。 よって1ssin(20+4) 1 14 -1 1x AX 3+√2 ゆえに 1≤f(0)≤ この 2 ? a+r したがって,f(8) は 各辺にを掛けて √2 I> sin(20+4) √2 2 を開く! くには? 20+ π TC πC 4 2 すなわち = で最大値 120 8 π = 4 5 20+ 2 すなわち =1で最小値1をとる。 4 この各辺に22を加える。 ・利用して、右辺をsio 3+√2 2

解決済み 回答数: 1
数学 高校生

数Iの黄チャートの例題80の青の線を引いているところがなぜこの答えになるのかわかりません。解説よろしくお願いします🙇‍♀️

基本 例題 80 2次方程式の応用の 右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺 AB, AC上に AD=AE となるように2点D, E をとり, D, E から辺BC に 垂線を引き、その交点をそれぞれF, G とする。 D 00000 A E 基本 66 B F G 長方形 DFGE の面積が20cm² となるとき 辺FG の長さを求めよ。 CHART & SOLUTION 文章題の解法 ① 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=xとして, 長方形 DFGE の面積をxで表す。 そして、 面積の式を =20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が, xのとりうる値の条件を満たすかどうか 忘れずに確認する。 解答 3 9 01(S-1) (SA) #AE SA FG=x とすると, 0 <FG<BC であるから A 0<x< 20 ・① また, DF=BF=CG であるから D E 2DF=BC-FG # よって DF= 20-x 2 B F G C 3.0 - [0] 定義域 ∠B=∠C=45° であるか ら, BDF, ACEGも直 角二等辺三角形。 830 => [s] 20-x 長方形 DFGE の面積は DF •FG= x 2 20-x ゆえに x=20 2 整理すると これを解いて x2-20x+40=0 x=-(-10)(-10)2-1・40 =10±2√15 ← 係数が偶数 26′型 912 ここで, 02√158 から とき 解の吟味。 10-8<10-2/15 <20, 2<10+2/15<10+8 02√15=√60<√64=8 よって、この解はいずれも ①を満たす。 したがって FG=10±2/15 (cm) 単位をつけ忘れないよう に。 PRACTICE 802 その平方が、他の2数の和に等しい。 この3

解決済み 回答数: 1
数学 高校生

5 (1)についてです。 2枚目の写真なのですが、必要十分条件は十要だと覚えてるのですが、矢印の上の左から右に行くところが十分なのか、左がのことを十分というのかどちらなのか教えていただきたいです🙇‍♀️ また、この問題の場合は条件aの十分条件だから左側で合ってますか? ど... 続きを読む

S 〔2〕 四角形ABCD に関する条件α ~g を次のように定める。 a: 平行四辺形である。 ✓ 6: AB=CD かつ BC = DA vc: AD//BC d: AD // BC かつ ∠A= ∠C e: 二つの対角線がそれぞれの中点で交わる。 f: 二つの対角線の長さが等しい。 g: 二つの対角線が直交する。 小 (1)条件6~gのうち、条件αの十分条件であるものをすべて挙げた組合せとして正しいものは ウ5 である。 ウ |の解答群 b, c ① b, d 2d, e b, c, fb, d, e 5 d, e, f (2)条件6~g のうち、条件αの必要条件であるものをすべて挙げた組合せとして正しいものは エロである。 エ の解答群 O b, c, f 3 b, c, d, e ①b, de 4. b, d, e, g 2d, e, f ⑤ d,e,f,g (3) 「α かつオ」は四角形ABCDが長方形であるための必要十分条件である。 オ の解答群 O b C e ④ f g (4)条件〜gのすべてを満たす四角形ABCD は カ の解答群 ⑩ 存在しない 4 正方形である 正方形でないひし形である ③平行四辺形でない台形である (配点 10) (公式・解法集 7 8 9

解決済み 回答数: 1
数学 高校生

どうして黄色いところの式になるのか分かりません、、。教えて欲しいです

重要 例題 173 連立不等式で表される立体の体積 00000 xyz空間において,次の連立不等式が表す立体を考える。スエ (0≦x≦1,0≦x≦1,0≦x≦1,x2+y2+22-2xy-1≧0 (1)この立体を平面 z=t で切ったときの断面を xy 平面に図示し、この断 面の面積 S(t) を求めよ。 (2) この立体の体積Vを求めよ。 [北海道大] 基本165 CHART & SOLUTION この問題では、連立不等式から立体のようすがイメージできない。 そのような場合も 断面積を求め, 積分すればよい。 この問題では, (1) で指定されているように, z軸に垂直な平面 z=tで切ったときの切断面 を考える。 解答 (0≦x≦1であるから 1枚 x2+y2+22-2xy-1≧0 において, z=t とすると x2+y2+t2-2xy-1≧0 (y-x)2≥1-12 y-x-1-2 または √1-f≦y-x y≦x-v1-12 よって すなわち ゆえに または y≧x+√1-12 よって, 平面 z=t で切ったとき 水の断面は、右図の斜線部分である。 ただし、境界線を含む。 YA y=x+1-t2 y=xv1t2 √1-12 また S(t)=2/12 (11) 2 1-√1-2 転体に(1-√1-2)2 O √1-12 x 1-√√1-12 z=t を代入すれば、断 面の関係式 (xy平面に 「平行な平面上) がわかる。 X'A' (A≧0) ⇔X≦-A, AsX ←T = √1 -f とおくと、 断面は直線 y=x+T の上側 y=x-T の下 側で, 0≦x≦1,0≦y≦1, 0≦T≦1 である。 2つの合同な直角二等 辺三角形の面積の合計。 (2) V=SS(t)dt='(1-√1-1²)²dt 1 =(2-1-21-1)=[21-1]-2S コード at t=2t S 1-dt は半径が 1 の四分円の面積を表すから 5 =2-13-21-1-1 PRACTICE 1736 を正の実数とする。 xyz 空間において, 連立不等式 MELE x²+ y² ≤r², y²+z² ≥ r² - 2 | 積分区間は 0≦t≦1 bxS ←t=sine の置換積分法 より、図形的意味を考え た方が早い。

解決済み 回答数: 1