学年

教科

質問の種類

数学 高校生

数学1A青チャートの問題です。黄色の蛍光ペンで引いているところですが、AG‘:G‘M=AH:OMとなるのがどうしてなのか分かりません。是非どなたか教えて頂けるとありがたいです。

正三角形でない △ABC の重心G, 外心0, 垂心Hは一直線上にあって,重心は 重心外心垂心の関係 377 基本例題 72 p.370, 371基本事項1, 2), 4 DOO し心と垂心を結ぶ線分を,外心の方から1:2に内分することを証明せよ。なお。 北本例題 71の結果を利用してもよい。 杉針>証明することは,次の[1], [2] である。 [11 3点G, O, Hが一直線上にある。 これを示すには,直線 OH 上に点Gがあることを示せばよい。それには, OH と中線 AM の交点をG’として,G' とGが一致することを示す。 』 [21 重心Gが線分 OH を1:2に内分する,つまり OG: GH=1:2をいう。 AH/OM に注目して,平行線と線分の比の性質 を利用する。 3章 10 解答 右の図において,直線 OH と △ABC の 中線 AM との交点をG’とする。 AHIBC, OMIBC より, AH/OM A (垂心、外心の性質から。 であるから AG':G'M=AH: OM 0。 TGiH 1 =2OM:OM B M C 基本例題71 の結果から。 =2:1 ZAM は中線であるから,G' は △ABCの重心Gと一致する。 よって、外心 0, 垂心H, 重心Gは一直線上にあり 外心,重心,垂心が通る直線 (この例題の直線 OH)を オイラー線 という。 ただし、 正三角形ではオイラー線は定 義できない。下の検討③参 照。 HG:OG=AG:GM=2: 1 『すなわち OG:GH=1 :2 三角形の外心,内心, 重心, 垂心の間の関係 0外心は三角形の3辺の中点を結ぶ三角形の垂心である(練習 72)。 2 重心は3辺の中点を結ぶ三角形の重心である(練習 70)。 3 正三角形の外心,内心, 重心,垂心は一致する(練習 71)。したがって, 正三角形ではオイ ラー線は定義できない。 2② AABC の辺 BC, CA, ABの中点をそれぞれL, M, N とする。 △ABCの外心 練習 0は ALMN についてどのような点か。 72 p.382 EX48,49 O 三角形の辺の比、五心

解決済み 回答数: 1
数学 高校生

この写真の波線部が成り立つのはどうしてですか? 詳しくお願いします!!!

例題143 円に内接する四角形[2] 四角形 ABCD は円0に内接する。AB = 8, CD = DA = 5, ZBAD = 60° であり,対角線 AC と BD の交点をEとするとき, 次の値を求めよ。 (1) BD (2) BC (3) 円0の半径R (4) BE:ED @Action 円に内接する四角形は,(対角の和) = 180° を使え 例題142) 求めるものの言い換え 2) 四角形の外接円の半径の求め方はわからないが, 三角形の外接円の半径の求め方はわかる。 →円0は△口の外接円でもある。 14) 線分の比を,三角形の面積比から考える。 s 章 1 図1 図2 A 底辺の比)の対 とみる で し △ABE:△ADE(図 1) BE:ED /E D EL BE:ED = BP:DQ より D (高さの比) とみる B △ABC:△ACD(図 2) B CP それぞれの三角形の面積を求めやすいのは, どちらの方法か? 闘(1) AABD において, 余弦定理により BD° = 8° + 5°-2-8·5cos60° = 49 ab/AX BD>0 より (2) 四角形 ABCD は円に内接するから 60° oi 5 和が BD = 7 8 180° D = N の D B C E る。 5。 ZBCD 180°- ZBAD = 120° B 対角の和は 180° である から ZBCD+ ZBAD =D 180° 例題 132 ABCD において, 余弦定理により 7° = BC° + 5°-2·BC·5cos120° BC°+ 5BC-24 =0 より 1 (BC+8)(BC-3) = 0 COs120° 2 BC>0 より BC = 3 3 て 1日四角形 ABCDの外接 円は AABC, △ACD, AABD, ABCD の外接 円でもある。 例題 13) 円0は△ABD の外接円であるから,正弦定理により 14/3 BD 07 sin60° 14 2R sin A V3 7/3 R= 3 よって (単1)学大城 (4) BE:ED = △ABC: △ACD *DA·DCsin(180°- ZABC) ミ -· BA·BCsin/ABC: 2 sin(180°- ZABC) = sin ZABC = BA·BC:DA DC = 24:25 思考のプロセス

未解決 回答数: 1