学年

教科

質問の種類

数学 高校生

数Ⅰ組み合わせの問題です。 (2)の解説おねがいします!

基本 例題 30 整数解の組の個数 (重複組合せの利用) (1) x+y+z=7 を満たす負でない整数解の組 (x, y, z) は何個あるか。 00000 (2)x+y+z=10 を満たす正の整数解の組 (x,y,z)は何個あるか。 IC HART & THINKING 整数解の組の個数と仕切りの活用 p.294 基本事項 3基本29 (1) 直接数え上げるのは大変である。 問題を読みかえて, x, y, zの異なる3個の文字から 重複を許して7個の文字を取り出すと考えよう。すなわち 7個の○と2個の仕切りの 順列を考え,仕切りで分けられた3つの部分の○の個数を,左から順にx,y,zとする。 〇〇〇一〇〇一〇〇には (x, y, z)=(3, 2, 2) 例えば 一〇〇〇〇〇〇〇には (x, y, z)=(0, 2, 5) がそれぞれ対応する。 (2)x,y,z正の整数であることに注意。 (1)の考え方では0となる場合も含むから x-1=X, y-1=Y, z-1=Z とおき、0であってもよい X≧0, 0, Z ≧ の整数解の場合 ((1) と同じ) に帰着させ る。これは, 10 個の○のうち, まず1個ずつを x, y, z に割り振ってから, 残った7個の 1個ずつをx,y,zに割 ○と2個の仕切りを並べることと同じである。 また,別解のように, 10 個の○と2個の仕切りを使う方法でも考えてみよう。 要 次の条 (1) 0 CHA 大小 (1) 3 ら (2. そ 重 別 A (c 解答 (1) 求める整数解の組の個数は, 7個の○と2個のを1列 に並べる順列の総数と同じであるからAPの道 9C7=9C2=36 (個) (2) x-1=X, y-1=Y, z-1=Z とおくと X≧0, Y≧0,Z≧0 このとき, x+y+z=10 から よって (X+1)+(Y+1)+(Z+1)=10 X+Y+Z=7, X≧0, Y≧0,Z≧0. 求める正の整数解の組の個数は, A を満たす 0 以上の整数 解 X, Y, Zの組の個数に等しいから, (1) の結果より 36個 (別解 10個の○を並べる。 このとき,○と○の間の9か所から2つを選んで仕切りを 入れ A|B|C ので、地点 としたときの, A, B, C の部分にある○の数をそれぞれx, y, z とすると, 解が1つ決まるから C2=36 (個) 別解 求める整数解の組の 個数は、3種類の文字 x, y, zから重複を許して7個取 る組合せの総数に等しいか 3H7=3+7-1C7=9C7 =gC2=36(個) x=X+1,y=Y+1, z=Z+1 を代入。 例えば 001 1000 (x, y, z)=(2, 5, 3) を表す。 (1)

解決済み 回答数: 1
数学 高校生

(2)なんでそうなるのかわかりません。説明して頂きたいです🙇🏻‍♀️

328 第9早 練習問題 3 (1)675の正の約数の個数とその総和をそれぞれ求めよ. (2)756n が平方数(ある整数の2乗で表される数)となる最小の自然数n を求めよ. 精講(1)は素因数分解を活用しましょう.素因数分解をするときは2,3, 5,7,…と小さい素数から順に割り切れる素数を探していくのが基 本です.3の倍数の判定条件が 「各桁の数の和が3の倍数」 であることを押さ えておくと便利です. (2)において,ある数が平方数になるということは,その数が全く同じ2つの数 に分割できるということです.そのためには, 「すべての異なる素因数を偶数 個ずつ持つこと」 が条件になります. 解答 (1) 675を素因数分解すると 675=3x52 3675 3)225 第2の倍数ではない 6+7+5=18 より3の倍数 2+2+5=9 より3の倍数 3 を何個取り出すかが 3) 75 7+5=12 より3の倍数 0~3個の4通り 5) 25 5の倍数 5 を何個取り出すかが 5. 0~2個の3通り ( 小さい素数から ココが素数になれ 順に調べる ばおしまい なので、約数の個数は 4×3=12個 その総和は 」と「大 (1+3+32+3)(1+5+52)=40×31=1240 (2)756を素因数分解すると 756×7 756n を平方数にするためには,すべての素因数が 2)756 2の倍数 偶数個になるようにすればよい. 2)378- -2の倍数 よって、かけるべき最小の自然数nは 3)189 -3の倍数 3) 63 -3の倍数 である. n=3×7=21 このとき 756×21=22×34×720 3) 21 -3の倍数 偶数 7 素数 女子() =(2×32×7)=1262 /

未解決 回答数: 1
数学 高校生

Q青線部の3×3×3という、なぜ3を使うのかがわかりません 奇数の要素は1.3.5.7.9なんだから5×5×5になるんじゃないんですか?(緑線部は2または6という要素の数を書き出しているのに対しなぜ奇数の部分は要素の数を書かないのか、という点で躓いています) どうか解説よ... 続きを読む

基本 9(全体)(・・・でない)の考えの利用 00000 |大、中、小3個のさいころを投げるとき 目の積が4の倍数になる場合は何通り あるか。 指針 [ 東京女子大】 「目の積が4の倍数」を考える正攻法でいくと、 意外と面倒。 そこで、 (目の積が4の倍数)=(全体) (目の積が4の倍数でない) として考えると早い。 ここで. 目の積が4の倍数にならないのは、次の場合である。 [1] 目の積が奇数→3つの目がすべて奇数 [2]目の積が偶数で,4の倍数でない→偶数の目は2または6の1つだけで、他の 奇数 早道も考える CHART 場合の数 (Aである) = (全体) (Aでない)の技活用 目の出る場合の数の総数は 6×6×6=216 (通り) の法則 (6と書いても よい。) 回答 目の積が4の倍数にならない場合には,次の場合がある。 [1] 目の積が奇数の場合 3つの目がすべて奇数のときで 3×3×3=27 (通り) [2] 目の積が偶数で, 4の倍数でない場合 奇数どうしの積は奇数 1つでも偶数があれば 積は偶数になる。 3つのうち、2つの目が奇数で, 残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54 (通り) [1] [2] から, 目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって、 目の積が4の倍数になる場合の数は 216-81=135 (通り) 和の法則 (全体)(・・・でない) m T 目の積が偶数で,4の倍数でない場合の考え方 上の解答の [2] は、次のようにして考えている。 寸 大, 中小のさ の出 中小)と表すと、3つの目の積が偶数で、4の にならな目の出方は、以下のような場合である 大,中,小)=(奇数 奇数 2または 奇数 2または6, 奇 3×3×2 通り

解決済み 回答数: 1
数学 高校生

解説を読んでもなかなか理解できず困っています。 3つの青い線を引いた箇所がなぜそういう式変形になるのか教えて頂きたいです!回答よろしくお願いします!

例題 72 微分係数の利用 (1) **** 微分係数を利用して,次の極限値を求めよ. 199 解答 (1) lim ex-1 (1) lim 110 x を用いてよ sinx-sina (2) lim (aは0でない定数) x³-a³ 11a log(x+1) (3) lim x 0 tanx 考え方 関数f(x)のx=q における微分係数f(a)は, f'(a)=lim f(ath)-f(a) 914 または,f(a)=limf(x)-f(a) x-a xa である.この定義をどのように活用するか考える. (1) lim e-1は、②において、a=0 の場合と考えられるが, x exの2xに着目すると, 分母のxが2x であれば, 合 e2x-1 x 0 x lim2. e2x-eº x0 2x (2) lim xa =lim x a =lim x → a -=2・1=2 sinx-sina x³-a³ sinx-sina (xa)(x²+ax+α²) x2+ax+a2 1 Ea²+a+a sin x-sin a x-a cosa cos a 3a² A-m log(x+1) (3) lim 110 tanx 414 =lim 10 110 log(x+1)-log(0+1) x-0 tan x-tan0 x-0 e2-1 e2-e° lim =lim -=1 x 0 2x 018 2x 3 となりのx=0における微分係数として求めることができる. Focus (2) lim sinx-sina -は,f(x)=sinx のxaにおける微分係数として考えることが できれば,極限値を求めることができそうである。 分母に着目すると, x-a=(x-a)(x+ax+a^) と因数分解できる. (3) 分子は, log(x+1), 分母は, tanx であるので, このままでは(1),(2)のように考えることができない. そこで、分母と分子を分けて、それぞれで考えてみる。 分子は, _log(x+1)-log ( 0+1) lim- 110 x-0 とみることができる.log(0+1)=0) 練習 分母は, lim- 110 tan x-tan0 x-0 とみることができる. (tan0 = 0 ) ** ここで, log(x+1) のときもtanxのときも, 分母がx-0であることに注目する. ② f'(a)= limf(x)- 819 f'(a)=lim fla+ X- (2か所のは同じもので,ん 72 微分係数を利用して、次の極限値を求めよ。 (1) lim e-1 x → 0 sin x π

解決済み 回答数: 1
数学 高校生

・ 数学A 場合の数 青チャート 写真のあおちゃの問題です 解答の[2]の式の(3²×2)のところまでは分かるのですが、そこからなぜさらに×3をするかがわからないです、、 どなたかご解説お願い致します🙌🏻✨

基本例題(全体)(・・・でない)の考えの利用 00000 |大,中, 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。るか。 [東京女子大] 基本 7 指針 「目の積が4の倍数」を考える正攻法でいくと, 意外と面倒。 そこで、 (目の積が4の倍数)=(全体) (目の積が4の倍数でない) として考えると早い。ここで,目の積が4の倍数にならないのは,次の場合である。 [1] 目の積が奇数→3つの目がすべて奇数 00) $1 [2]目の積が偶数で, 4の倍数でない偶数の目は2または6の1つだけで、他の 2つは奇数 早道も考える CHART 場合の数 わざ (Aである)=(全体) (Aでない)の技活用 1+1)(3+8+1)-(+) (+) (63 と書いても の法則 目の出る場合の数の総数は 6×6×6=216 (通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。 よい。) [1] 目の積が奇数の場合 (I+1)×( 3つの目がすべて奇数のときで 3×3×3=27 (通り) [2] 目の積が偶数で, 4の倍数でない場合 奇数どうしの積は奇数。 1つでも偶数があれば 積は偶数になる。 3つのうち、2つの目が奇数で、残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54 (通り) [1] [2] から, 目の積が4の倍数にならない場合の数は 22) (a+b+c) (A+ 27+54=81 (通り) よって、目の積が4の倍数になる場合 調率れぞれ1つ216-81=135 (通り) A ( 和の法則 S (全体)(・・・でない) )

解決済み 回答数: 1