学年

教科

質問の種類

数学 高校生

かっこ2のアで1-tとtを解答と逆にしてもいいと思いやってたのですが答えが合わないので計算途中をお願いしたいですよ

する(s, t |基本例題 34 直線のベクトル方程式, 媒介変数表示 00000 (1) 3点A(a),B(b),C(c) を頂点とする △ABC がある。 辺AB を2:3に内 分する点を通り,辺 ACに平行な直線のベクトル方程式を求めよ。 指針 2点(3,2) (2,-4) を通る直線の方程式を媒介変数を用いて表せ。 (イ)(ア)で求めた直線の方程式を, tを消去した形で表せ。 (1)点A(a)を通り,方向ベクトルの直線のベクトル方程式は p=a+td 40 67 1 p.65 基本事項 1 章 ここでは,Mを定点, AC を方向ベクトルとみて、この式にあてはめる (結果はa, もこおよび媒介変数を含む式となる)。 (2)2点A(a),B(b) を通る直線のベクトル方程式は b=(1-t)a+tb D=(x,y), a= (-3, 2) = (2,-4) とみて,これを成分で表す。 (1)直線上の任意の点をP(D) とし, tを媒介変数とする。 3a+26 A(a) ⑤ ベクトル方程式 解答 M (m) とすると m= P(p) 5 2 辺 ACに平行な直線の方向ベクトルはACであるから b=m+tAC=30+26+t(ca) M(m) 3 c-a t=0 B(b) C(c) 5 t=19 整理して b = (1/2/3 - ta1+1/26+1ctは媒介変数) 3a+26 +t(c-a) 5 でもよい。 LS) (2)2点(-322-4 を通る直線上の任意の点 の座標 (x,y) とすると (x,y)=(1-t)(-3, 2)+t(2,-4) =(-3(1-t)+2t, 2(1-t)-4t) =(5t-3, -6t+2) P(x, y), A(-3, 2), B(2,-4) とすると, OP= (1-t)OA+tOB と同じこと (Oは原点)。 各成分を比較。 x=5t-3 よって (tは媒介変数) ② とする。x=31 ① ×6+② ×5 から 6x+5y+8=0 tを消去。 ly=-6t+2 (イ) x=5t-3. ①,y=-6t+2 参考 数学IIの問題として, (2) を解くと, 2点 (-3, 2) (2, -4) を通る直線の方程式! -4-2 2+3 y-2= (x+3) から 6x+5y+8=0 練習 (1) △ABCにおいて, A(a),B(b),C(c)とする。 M を辺BC の中点とする 34 直線AMのベクトル方程式を求めよ。 博介変数で表された式, tを消去

回答募集中 回答数: 0
数学 高校生

全くわかりませんできれば明日までに回答が欲しいですおねがいします。

A2 20人の生徒に10点満点の数学のテストを行った。試験当日1人の生徒が欠席したため、 19人の生徒が受験し、19人の生徒が受験したテストの得点の平均値は5(点),分散は4で あった。 後日、欠席していた1人の生徒がこのテストを受験したところ、 得点が7点であった。 太郎さんと花子さんは、今回のテストの得点の分散について会話をしている。 2人の会話 を読み、 以下の問いに答えよ。 ただし, テストの得点は整数とする。 太郎: 受験者が1人増えたから,分散の値も変化するよね。 花子:そうだね。 でも、20人の受験者全員の得点がわからないから,どうやって求め たらいいかな。 太郎 次のようにして求めるのはどうだろう。 <太郎さんの解答> 試験当日にテストを受けた19人の受験者の得点をx (1≦x≦19, nは自然数)と おく。 試験当日にテストを受けた19人の受験者の得点の平均値が5, 分散が4であ るから {(x1-5)+(x2-5)+…+(x19-5)^= 4D すなわち (x1-5)+(x2-5)+…+(x19-5) 76...... ② よって、 20人の受験者全員の分散をVx とすると V2= 2l(x1-5)2+(x2-5)+…+(-5)+(7-5)2 =2/10(764) ......④ =4 花子: <太郎さんの解答> には誤りがあるよ。 (ア) がおかしいよ。 太郎: そうか。じゃあ、どうすればいいのかな。 花子: 分散は,(分散)=(x^2の平均値)(xm の平均値)? を利用して求めることができ るから、試験当日にテストを受けた19人の受験者の得点x (1≦x≦19 n は自 然数)について, (xm² の平均値) を求めることにより、 20人の受験者全員の得点 の分散を求めることができないかな。 (1) 試験当日にテストを受けた19人の受験者の得点の標準偏差を求めよ。 また, 花子さん が誤りを指摘した (7) に当てはまるものを,次の1~4のうちから1つ選び、番号で 答えよ。 1 ①立式 2 ①から②への式変形 3 ③ 4 ③から④への式変形 (2)19, nは自然数) の平均値を求めよ。 また, 20人の受験者全員の得点の 分散 Vs を求めよ。 (配点 20 )

回答募集中 回答数: 0