学年

教科

質問の種類

数学 高校生

至急お願いします🙇 数Iの範囲なのですが解説が載ってなくてどうしてこの答えになるかがわからないので解説お願いします🙇 問2全部です

22:57 1月28日 (火) PDF } ああ 今] 80% サムネールを表示 Ⅱ 以下の問いに答えなさい。 問1 kを0でない実数とする。 xの2次方程式 x2 (3k+7)x +5k = 0 と x2+ (3k-3)x -5k = 0 が共通の解をもつとき,kの値と共通解を求めなさい。 問2 下の図は, ある日のある時刻に, 直進する太陽光が建物 (図の長方形) によって遮られ, 地面に 影が出来ている様子を表す。 図において, 影と日向(ひなた)の境界である点Aと建物の壁の点 Bの距離は360√3cmであり, 太陽光と地面のなす角 (∠BAC) は30° である。 (1) この建物の高さを求めなさい。 (2) (1)において, 身長160cmの人が建物から離れたところに立っている。 ここで, 人を線分 XYで表し, 端点Xは頭部を表すとする。 夏の猛暑のため、この人は日陰に近寄ろうとして 地面に出来た建物の影の部分に立っているが, 頭部 X は太陽光に当たってしまっている。 この人の頭部が太陽光に当たらないようにするためには, 点Bから何cm以内まで近づけば よいか。 図を参考にして答えなさい。 A 人 X 30° 日向 A Y (ひなた) 日陰 B ............... 太陽光 建物

回答募集中 回答数: 0
数学 高校生

(1)(2)ともにまったく分からないので教えてください!

[大] 大] 重要 例題 9 二項定理の利用 (1) 101 ' の下位5桁を求めよ。 (2)2 00で割った余りを求めよ。 CHART & THINKING のののの 23 基本 (1),(2) ともに, まともに計算するのは大変。 (1) は,次のように変形して、 二項定理を利用する。 1011= (100+1)100= (1+102) 100 展開した後, 各項に含まれる 10 に着目し, 下位5桁に関係する箇所のみを考える。 (2)も二項定理を利用するが,どのようにすればよいだろうか? →900=302 であることに着目し,2930-1 と変形して考えよう。 解答 (1) 1011=(100+1)100= (1+102) 100 =1+100C1・102+100C2・10+100C3・10°+100C4・10°++10200 =1+100C1・102+100C2・10+10%(100Cs+100C4 ・ 102 +... +10194) ここで, a=100C3 +100C4・102 +…+10194 とおくとaは自然数で 101100 = 1+10000 + 49500000 +10°α =10001+49500000 +10°a =10001+105(495+10a) 10 (495+10a) の下位5桁はすべて 0 である。 よって, 101100 の下位 5桁は 10001 (2) 2945(30-1)45=(-1+30)45 =(-1)^5+45Ci (−1)44・30+45C2(-1)43・302+45C3(-1)42・303 ■■ 1章 1 3次式の展開と因数分解,二項定理 分散式は、 +…+45C44(-1)・304+3045 第3項以降の項はすべて 302=900で割り切れる。 また,(-1)45=-1, -1) =1であるから -1+45・1・30=1349=900・1 +449 よって, 2945 を900で割った余りは 449 大←第1項と第2項の和は 900 より大きい。 計算への応用 INFORMATION 上と同じ考え方で, 複雑な計算を暗算で行うことができる。 例えば,9992 は 9992=(1000-1)=1000000-2000+1=998001, 4989×5011 は 4989×5011=(5000-11)×(5000+11)=50002-11=25000000121=24999879 と計算 できる。

回答募集中 回答数: 0