学年

教科

質問の種類

数学 高校生

この問題の3番目の問題についてなんですが,この場合全ての整数が,0,1のどちらかになっていないと成立しないと思ってて,例えば、a1が3で他の解が0の時が想定されてないと思いました。 私の考え方の間違っている部分を教えてください

386 okakaka<a<a<9 次の条件を満たす整数の組 (a1,a2, 3, 4, 重要 例題 34 数字の順列 (数の大小関係が条件) (2) 0≤a≤a2a3 a4 a5≤3 α5) の個数を求めよ。 0000 基本32 88 3個の数字から異な 異なる 4個の数字から重複を 解答 (1) Kaz (3) aitaztastastas≦3, a≧0 (i=1,2,3,4,5) 指針 (1) α1, 2,..., as はすべて異なるから, 1, 2, ・・・・・, 個を選び,小さい順に,a1,a2, ..., as を対応させればよい。 求める個数は組合せ Cs に一致する。 (2)(1) とは違って、条件の式にを含むから, 0, 1, 2, 34 して5個を選び,小さい順に aaaa5を対応させればよい。 求める個数は重複組合せ&Hs に一致する。 (3)おき換えを利用すると,不等式の条件を等式の条件に変更できる。 ataztastastas+6=3 3-(a+a2+as+a+αs) =bとおくと また, a+az+αs+a+αs≦3から b≥0 よって、 基本例題 33(1) と同様にして求められる。 (1) 1, 2,......, 8の8個の数字から異なる5個を選び, 小 さい順に a1,a2, ....., 45 とすると, 条件を満たす組が 1つ決まる。 よって, 求める組の個数は 8C5=8C3=56 (個) (2)0,1,2,3の4個の数字から重複を許して5個を選び, 小さい順に α1, 2, ......, as とすると, 条件を満たす組 が1つ決まる。 よって, 求める組の個数は 4Hs=4+5-1Cs=8C5=56(個) (3) 3-(a1+a2+as+a+αs)=bとおくと a1+a2+as+a+as+b=3, ai≧0 (i=1,2,3,4,5),60 ...... ① よって, 求める組の個数は, ① を満たす0以上の整数の 組の個数に等しい。 これは異なる6個のものから3個取 る重複組合せの総数に等しく 6H3=6+3-1C3=8C3=56 (個) 別解 a1+a2+as+a+as=k(k=0, 1, 2, 3) を満たす 0 以上の整数の組 (a1, A2, 3, 4, 5) の数は5Hであ るから 5Ho+5H1+5H2+5H3 =4Co+5C1+6C2+7C3 =1+5+15+35=56 (個) 検討 一等式 (2),(3)は次のように 解くこともできる。 (2) [p.384 PLU ONE の方法 bi=aiti(i=1,2 4, 5) とすると, 0<bı <b<by<br< と同値になる。』 (1)の結果から (3)3個の○と 切りを並べ、例 ||0|100|| 合は(0,1,0, を表すと考える このとき A|B|C|D とすると,A, D, E の部分に の数をそれぞ a3, 4, as と 組が1つ決ま 8C3=56( 5桁の整数nにおいて, 万の位, 千の位, 百の位、十の位、一の位の数字を a, b, c, d, e とするとき, 次の条件を満たすnは何個あるか。 (1) a>b>c>d>e _3) a+b+c+d+e≦6 (2) a≧bcd≧e

未解決 回答数: 1
数学 高校生

2番の問題がわかりません。2枚目のやつが私が解いたやつです。-1/2より小さい範囲を求めているのにどうしてそれ以外の範囲も答えなのか教えて欲しいです

705 基本例 例題 145 002 のとき, (1) 2cos20+sin 指針 複数の種類 ① (1) ② (1) は このと ③ ②で の値 CHAR 234 基本 例題 144 三角方程式・不等式の解法 (1) 002 のとき,次の方程式、不等式を解け。 (1) √2sin(6+)=1 ・おき換え 2 cos(20- π 3 5-1 指針 解答 ()内でおき換えると (1) √2 sint=1 ずこれを解く。このとき, tの変域に要注意! 例えば,(2) 000 (2) 2cost≦-1 となるから、 020≦20 <2.2→ π つまり, 2cost≦-1 を-- -1≦t<4/1の範囲で解く。 ≤20-1 CHART 変数のおき換え 変域が変わることに注意 (1)+q=t ...... ① とおく。 0≦0<2であるから 50+<2x+) π 6 すなわち π 13 < π 6 6 この範囲で√2 sint=1 すなわち sint=1/2を解く 3 と t= π ...... 4' 4 ①から=t-π π 3 ② を代入してθ= (2)20=t とおく。 0≦0<2であるから >82 π -≤20- π π <4- 3 3 11 すなわち π (1) 方程 y 整理 1 解答 数) -1 0 7 π 12' 12 と 8 t ・π, よって 4 3 この範囲で2cost≦-1 すなわち cost≦- Asis, rsts or 3 12 17520-1*, *≤20-10, 10 われめるは を解く y 4 10 2 3 1 3 3 8 1 10 1 x 3 3 ゆえに20 5 π, 3л≤20≤⋅ 3 113 T よって101212/21/2 TO 5 ・π, 32 練習 0≦2のとき,次の方程式、不等式を解け。 ② 144 1) tan(+)=√3 (2) sin(-)-1 ゆえ よっ 0≤0 S (2) $14 (3)

未解決 回答数: 0