学年

教科

質問の種類

数学 高校生

72.1 原点Oについての文章は必要ですか? また必要ならなぜ必要なのでしょうか?

35) で AB 座標を利用した証明 (1) 基本例題 72 (1) △ABCの重心をG とする。 このとき, 等式い AB2+BC + CA=3(GA²+GB2 + GC2) が成り立つことを証明せよ。 (2) △ABC において, 辺BC を 1:2に内分する点をDとする。 このとき, 等式 2AB2+ AC2=3AD2 +6BD” が成り立つことを証明せよ。 指針 座標を利用すると, 図形の性質が簡単に証明できる場合がある。そのとき 座標軸をどこにとるか、 与えられた図形を座標を用いてどう表すか がポイントになる。そこで後の計算がらくになるようにするため、問題の点がなるべく 多く座標軸上にくるように 0 が多いようにとる。 (1) は A(34,36),B(-c, 0), C(c, 0) とすると,重心の性質からG(a,b) (2) は A(a,b),B(-c, 0), C(2c, 0) GAA CHART 座標の工夫 11 0 を多く ② 対称に点をとる 解答 (1) 直線BC をx軸に, 辺BCの垂直二等分線をy軸にとると, 線分BCの中点は原点0になる。 A (3α, 36), B(-c, 0), C(c, 0) とすると, Gは重心であるからG(α, b) と表される。 よって AB' + BC2 + CA2 =(-c-3a)2 +962+4c²+(3a-c)'+962 =3(6a²+6b²+2c²) GA2+ GB2+ GC2 = (3a-a)²+(3b-b)²+(-c-a)²+b²+(c-a)² +6² =6a²+662+2c2 ①②から AB2+BC2+CA²=3(GA²+GB2+GC 2 ) (2) 直線BC をx軸に点Dを通り直線BCに垂直な直線を y軸にとると、点Dは原点になり, A (a,b), B(-c, 0), C(2c, 0) と表すことができる。 (x+ よって 2AB' + AC2=2{(-c-a)+(-6)^}+(2c-a)+(-6) 2 =2(c²+2ca+a²+6²)+4c²-4ca+a²+ b² =3a²+36²+6c² 3AD²+6BD²=3(a²+b²)+6c² ①②から ① 2AB2+AC2=3AD2 +6BD2 基本71 基本85 B (-c,0) 0 34 A(3a,3b) (G (a,b) BA (-c, 0) OD (C,0) x A(a, b) 2 C (2c, 0) * SE,99 とする。 このとき, 等式 117 ET 3章 2直線上の点、平面上の点

回答募集中 回答数: 0
数学 高校生

68. 表を書けばいいと思いつけばあとは簡単だと思うものの、表を書くことを閃く自信がないのですが高次不等式の問題は表を書いて解くのが一番いい方法ですか?

108 重要 例題 68 高次不等式の解法 次の不等式を解け。 ただし, α は正の定数とする。 x-(a+1)x2+(a−2)x+2a≦0 指針▷まず,不等式の左辺を因数分解する。 因数定理を利用してもよいが,この問題では、 次の文字αについて整理する方が早い。 (x-ar)(x-B)(x-x)≧0の形に変形したら、後は各因数x-α, x-px-yの符号を割 て, (x-a)(x-β) (x-y) の符号を判定する。 なお,α,ß, yに文字が含まれるときは,α, B, yの大小関係に注意する。・・・・・・ 解答 不等式の左辺をα について整理すると (x²-x²-2x)-(x²-x-2) a ≤0 x(x+1)(x-2)-(x+1)(x-2)a≦0 (x+1)(x-2)(x-a) ≤0 0<a<2のときx-lax2+ a=2のとき x≦-1, x=2 2 <a のとき x≤-1, 2≤x≤a よって [1] 0<a<2 右の表から, 解は x≦-1, a≦x≦2 [2] a=2のとき x-a 不等式は (x+1)(x-2)=0となり,x-2 (x-2)^2≧0であるから f(x) x-2=0 または x+1≧0 (20)+(1-8) (D-1)+(ーー) α<β<yのとき (x-a)(x-β)(x-x)≧0の解は (x-a)(x-β) (x-x) ≧0の解は x x+1 a≤x≤ß, r≤x xha, Baxy [1] f(x)=(x+1)(x-2)(x-a) x (01 検討 3 次不等式を3次関数のグラフで考える 3次関数y=f(x)のグラフについては,第6章の微分法のところで 詳しく学習するが、グラフの概形は右の図のようになる。 このグラフから 4x²-x²-2x x-2 x-a f(x) =x(x-x-2) =x(x+1)(x-2) ゆえに, 解は x≤-1, x=2(x+1+0+(1+6)S-A+brys [3] 2<αのとき 右の表から,解は x-1,2≦x≦a [1]~[3] から 求める解は - 0 0 0 00000 ... a ... 2 …. + + + + + 0 + ++ [3] f(x)=(x+1)(x-2)(x-a) ... -1... 20 - 0 + 0 - + H + 28. 11.03 - 0 + 0 + 22 +0|0 + + FIT - B 1 a + + 0+ 0 + 2

回答募集中 回答数: 0
数学 高校生

72.1 原点Oについての文章は必要ですか? また必要ならなぜ必要なのでしょうか?

[0] 基本例題 12 座標を利用した証明 (1) 食 (1) △ABCの重心をGとする。 このとき, 等式 ABCT)ALLED AB'+BC2 + CA'=3(GA²+GB2 + GC2) が成り立つことを証明せよ。 9 $ (2) △ABCにおいて, 辺BC を 1:2に内分する点をDとする。 このとき, 等式 2AB'+AC2=3AD' +6BD' が成り立つことを証明せよ。 TOLOUR MAT 指針 座標を利用すると, 図形の性質が簡単に証明できる場合がある。 そのとき 0 31 けで AB この座標軸をどこにとるか、 与えられた図形を座標を用いてどう表すか がポイントになる。そこで後の計算がらくになるようにするため,問題の点がなるべく 多く座標軸上にくるように 0が多いようにとる。 (1) は A(3a, 36), B(-c, 0), C(c, 0) とすると, 重心の性質からG(a,b) (2) l A(a, b), B(-c, 0), C(2c, 0) CHART 座標の工夫 1 0 を多く ② 対称に点をとる Let 解答 (1) 直線BC をx軸に, 辺BCの垂直二等分線をy軸にとると,| 線分BCの中点は原点0になる。 A (3a, 36),B(-c, 0), C(c, 0) とすると, Gは重心であるからG(α, b) と表される。 よって AB2+BC2 + CA 2 (1) +8+-- =(-c-3a)² +962+4c²+(3a-c)2 +962 ① の場=6a²+662+2c2 ...... 0212 =3(6a²+6b²+2c²) HOMEB 平行四辺 GA2+ GB2+GC 2 (1=(3a-a)²+(36−b)²+(-c-a)²+b²+(c-a)² + b² ② ① ② から AB2+BC2+CA²=3(GA+GB2+GC2) (②2) 直線BCをx軸に点D を通り直線BC に垂直な直線を y軸にとると,点Dは原点になり, A (a,b), B(-c, 0),( (20) と表すことができる。 24+ (x + (11) M よって 2AB'+AC'=2{(-c-a)+(-6)^}+(2c-a)+(-6) 2 =2(c²+2ca+a²+b²)+4c²−4ca+a²+6² 2)2 2007 =3a²+3b²+6c² 3AD²+6BD²=3(a²+b²)+6c² ①②から 基本 71 ② B (-C,0) 2AB²+AC²=3AD²+6BD² +3,0 0-8 A 基本 85 EA(3a, 36) 0 (G (a,b) (c, 0) x y A(a, b) (E) 4 B12- (-c, 0) OD a(s) 2−)Ɔ (^_{}ª_{{I_DA Mɛ (1) 3DSMATRROS:8,9% 音の点をPとする。このとき,等式 117 (2c, 0) x ET 3章 12 直線上の点、平面上の点

回答募集中 回答数: 0
数学 高校生

数学のテストが難しくて分かりません!よろしくお願いします🥲

] 太郎 「サイコロを何個か振って出る目の和を考えよう。 花子 「サイコロを2個振って和が6になる確率は (ア) だね」 太郎 「サイコロを3個振って和が6になる確率は?」 花子 「ひたすら数え上げれば確率は (イ) だとわかるよ」 太郎 「サイコロの数や和がもっと大きくなると大変だね」 太郎 「サイコロ4個振って和が9になる確率を求めよう」 花子 「数えるのはやめよう。 サイコロを区別するため4色 で塗り分け、4個のサイコロの出る目をそれぞれ wx、y、zとして式をたてると (ウ) となるね」 太郎 「あの問題と同じだ! 4個の数字は自然数だから ウ (ウ)の解の組は全部で (エ) 通りになる。 したがって確率 も求まるね」 太郎 「サイコロを4個振って和が12になる確率も同じかな?」 花子 (オ)なのでそう簡単ではないよ」 ※ (オ)には簡単でない理由を書く 太郎 「でもひたすら考えればできるよ。 w x、y、z、 の組は 計算すると全部で (カ)通りなので確率も求まるね」 ( 4点×6点) (オ) カ 計算欄 5 Q 36 W+x+y+z=9 R296 サイコロは7以上は出ない 通り 125 (1,5) (2,4) (3.3) (4,2) (5,1) 36 |(1) 36 5 105 216 T 9 216 24 x+y+x 72 \0/ + x + 4 +2 通り 24 C

回答募集中 回答数: 0
数学 高校生

これ答え間違っていますよね。右のようにといたんですけど、答えが違います。 3枚目の解き方を参考にしました。 もし答えがあってるなら、この簡単な解き方で、どう解くのか教えてください。明日テストなので、お願いいたします。

17:00 × すなわち この古鶏10 y=(2a-3)x-α² 2/3 -4) を通るから 2- 解答 OM= M = a + ²/6+²/²/² -3)-3-a² 1²-6a+5=0 これを解いて a=1.5 a=1のとき 接点の座標は (1,-2) , 接線の方程式はy=-x-1 a=5のとき 接点の座標は (5,10) で, 接線の方程式はy=7x-25 圏 接線 y=-x-1, 接点 (1,-2) または 接線 y=7x-25, 接点 (5,10) = sa+to+(1-s)c ...... 2 ①, ② から ha+ho+2hc=sa+to+(1-s) c 4点 0, A, B, C は同じ平面上にないから h=s, h=t, 2h=1-s よって2h=1h ゆえにん 1116+60 a + 3b .b 3 したがって OM=21234+- 12 平行六面体OADB-CEGF において, 辺 DG のGを越える延長上に DG=GH となるよ うに点Hをとり,直線OH と平面 AFCの交点を M とする。 OA=a, OB=b, OC= とするとき, OM を a, b,c を用いて表せ。 OH = OA+AD + DH = a +6+2c Mは直線OH上にあるから, OM=hOH となる実数んがある。 よって OM=(a+6+2c)=ha+hb+2hc ...... ① また,Mは平面 AFC 上にあるから, CM = sCA + ICF となる実数 s, tがある。 ゆえに OM=OC+CM=c+sa-c)+tb → 13 四面体 ABCD において、次のことを証明せよ。 AB⊥CD, AC⊥BD ならば ADIBC 解答 AB=1, AC =c, AD とすると 山 CD=d-c, BD=d-b, BC=c-b ABLCD 5bd-c)=0 よって b.d=b.c ① AC⊥BD から cd_b) = o c.d=b.c ...... (2) 10 (a, a²-3a) ****** よって ①② から AD.BC=d.c-b) d.-d.b ml 5G 61 (3, -4) x |16|

回答募集中 回答数: 0
数学 高校生

別解においては z+1/z^2 が実数である条件に|z|=1を組み込んでいるのでそのまま式変形したら二つの条件を満たす解が出てくると思います。 もう一つの方は |z|=1よりzzー=1 を使ってz+1/z^2 が実数である条件に|z|=1を組み込んでいるのにそのまま別解のよ... 続きを読む

類 東北学院 は条件を 3 =z-3 a-B|=1 上の3点 が2の正 2√3 重要 例題 5 複素数の実数条件 z+1 学院大学 絶対値が1で , 指針> z+1 解答 すなわち 両辺に(z) を掛けて よって |z|=1 より zz=1であるから z+z²=2+(z)² ゆえに zzz(z)=0 なお,よって を掛けてゆえに よい。 複素数 αが実数⇔ α =α を利用する。 (2+1)=2+1 から得られるz, えの式を,|2|=1 すなわち=1 を代入することで簡単 121=1 → にする。 なお、 z=1から得られる z=- またはえ=1/2 を利用し,zのみまたはえのみ の式にして扱う方法も考えられる。 が実数であるための条件は z+1_z+1 [1] z-z=0のとき α+β [1][2] から 65 この方程式を解くと 練習 が実数であるような複素数zを求めよ。 別解 zz=1から (z_z) (1+z+2)=0 zz = 0 または 1+z+z=0 z=±1. A z+1 x= z²(z+1)=(z)²(z+1) 2.2z+2²=2.2z+(z)² 2 別解 Z=2 よって, z は実数であるから, |z|=1 より z=±1 [2] 1+z+z=0のとき 2+2=-1&dtß = ~ また, z=1であるから, z, は2次方程式x2+x+1=0のx²-(和)x+(積) = 0 解である。 dB=~ -1±√√3i 2 == 2 2+2²=2+1 −1± √√1²-4∙1 2・1 z+1 22 よって -1± √√3 i 2 z+1 ゆえに, Aは よって これを解いて z=±1, · 121=1==122=1&11711172 (2+1) = 2#12 #1112113 ztl ztl Z2 両辺に2を掛けて (z+1)(z-1)(z2+z+1)=0 -1±√3i 2 αが実数⇔ α =α (B)=²₁ a²=(a)² 00 z-z+(z+i)(z_z)=0 α, β が複素数のときも αβ = 0 ならば = 1/2 + ( ²¹2 ) ² = ²² 基本2 が成り立つ。 α = 0 または β=0 =2+z 2³ (2+1)-(2+1)=0 12³-1 z2z(z+1)=z+1 解の公式を利用。 ZZが解となっているがつに仕え という複素数がに11,ERS 満たしてるのでその手ま答えになる つまり、変形した式ははにし、基E脂満たす複素数の式 絶対値が1で、2-zが実数であるような複素数zを求めよ。 =(z-1)(z2+z+1) 17 1章 複素数平面 [類 関西大] (p.18 EX6

回答募集中 回答数: 0