学年

教科

質問の種類

数学 高校生

付箋の部分の計算が分かりません。詳しく解説お願いします🙇‍♀️

例 が特別な数列になっていないか考えてみるとよい。 次の数列の一般項 α を求めよ. XL 1, 7, 17, 31, 49, 71, X(2) 2, 3, 5, 9, 17, 3390 考え方 等差数列や等比数列でないなど, 与えられた数列の規則がわかりにくいとき,各項の から {an} as, a2, a3, aA, a5, ......, an-1, an, 手順で行う (芋) {6} 61, b2, b3, b₁, 数列{bm} を {an} の階差数列という. 2 のとき, 1 n-1 a,=a,+(b,+b2+bs+………+=+20 解答 与えられた数列{a} の階差数列を {bm} とする. 1枚 右にあるカードから1 (1){a}:1, 7, 17, 31, 49,71,=b {bm} : 6, 10, 14, 18, 22, =b2 となり,数列{bm} は,初項6,公差4の等差数列になっ ているから,第ん項 b [k] は, bk=6+(k-1)・4=4k+2 したがって,n≧2 のとき www n-1 n-1 (スタート) an a+b=1+Σ(4k+2) k=1 k=1 =1+4•—(n−1)·n+2(n−1)=2n²−1 2 この式は,n=1 のとき, a1=2・1°-1=1 となり、 +an-ab an-a-Σb より注意! an=a+b k=1 n=1のときのチェ a=1 だから, n=1のときも成り立つクをする。 よって, an=2n²-1 SI (2){a}:2, 3, 5, 9, 17. {6}:1.2. 4. 8, 4,8 となり, 数列{6} は, 初項 1. 公比2の等比数列にな っているから、第ん項bk は, bk=1.2k-12-1 したがって, n≧2 のとき www n-1 12 an=a+bk=2+21=2+ k=1 k=1 2-1 よって、 =2"-'+1 1 この式は, n=1のとき, a=2+1=2 となり, は、a=2 だから, n=1のときも成り立つあり、結果は よって, an=2" '+1 Focus 注意! an=a+Σb k=1 等比数列の和 n=1のときのチ をする.

未解決 回答数: 1
数学 高校生

こんにちは。この問題なんですが 解説を読んでも全然分かりません… 教えてくださる方いませんか??🙇‍♀️🙇‍♀️

3 高次方程式 109 ると余り (機大改) 余 x)を 解答 think 例題 54 割られる式の決定 **** + 2x +3 で割ると x +4余り、+2で割ると余るような多項式 P(x) で,次数が最小のものを求めよ。 P(x) を4次式(x+3)(x+2) で割った余りR(x)は3次以下の式である。 P(x)=(x+2x+3)(x+2) (商)+R(x) x+2x+3で割ると 割り切れる. x+2x+3で割ると、余りは、 1次以下の多項式 P(x)をx2+2x+3で割った余りと一致する.一 P(x) を4次式 (x2+2x+3)(x2+2) で割ったときの商を Q(x), 余りをR(x) とすると, P(x)=(x2+2x+3)(x+2)Q(x)+R(x) と表せ R(x)は3次以下の式である。 184+1- また、 ①において,P(x) を x2 + 2x +3で割ると, (x2+2x+3)(x+2)Q(x)はx2+2x+3で割り切れるから, P(x) をx'+2x+3で割った余りx+4は, R(x) をx'+2x+3で割った余りと一致する. つまり,R(x)=(x2+2x+3)(ax + b)+ x +4 割る式が4次式なの で、余りは3次以下 おく。 第2章 ·② とおける. 同様に,P(x) を x+2で割った余りが1であるから,CC R(x)=(x+2)(cx+d)-1 ・・・③ おける. ② ③より #JJD (x'+2x+3)(ax+b)+x+4=(x+2) (cx +d-1 が成立し,左辺と右辺をxの降べきの順に整理すると, ax+(2a+b)x2 + (3a +26+1)x +36 +4 =cx3+dx2+2cx+2d-1 R(x)は3次以下の 式だから 2次式で 割ったときの商は1 次以下の多項式とな る. これはxの恒等式であるから, a=c,2a+b=d, 3a+26+1=2c, 36+4=2d-1 これらを a, b について解くと, よって、②より, c, dを消去すると a=1.6=-1 a+26=-1 R(x)=(x2+2x+3)(x-1)+x+4= x + x2 + 2x + 1 x²+x²+2x+10 ①より、 P(x) = (x2+2x+3)(x+2)Q(x)+x + x' + 2x + 1 そして,P(x)の次数が最小になるのは Q(x)=0のとき である. よって、 求める多項式は, P(x)=x'+x'+2x+1 4a-b=5 Q(x)=0 のとき, P(x) は4次以上の 式となる。 us

未解決 回答数: 0