学年

教科

質問の種類

数学 高校生

表のXにかかっていて陰性のとき4/100×20/100の20/100というのは陰性と判定が出る確率という認識でいいんですか?正しく陽性が80%で誤陽性が10%なら誤陰性は10%になりませんか?解説お願いします🙇

4・29(火) 岐阜薬科大の問題です。 最近ではいろんな場面で出題されるようになりました。 ある病気Xにかかっている人が4% いる集団A がある。 病気 Xを診断する検 査で、 病気 Xにかかっている人が正しく陽性と判定される確率は80%である。 また、この検査で病気 Xにかかっていない人が誤って陽性と判定される確率は 10%である。 (1) 集団 A のある人がこの検査を受けたところ陽性と判定された。 この人が 病気 Xにかかっている確率はいくらか。 (2) 集団 A のある人がこの検査を受けたところ陰性と判定された。 この人が 実際には病気にかかっている確率はいくらか。 A 80% 正しく陽性 320 320+966 T 4% Xにかかっている。 (1)8 79 (2)1 10% 誤陽性 陽性と出る→80% 陰性と→20% (そのうち10% 4 (2)求める条件付き確率は (Xにかかっている)かつ(陰性) (陰性) で求められるから、 4 20 X 100 100 Xにかかっている。 4 Xにかかっていない 隅中 4 陰性 100 4 (00 :80 \100 20 96x10 100 100. me 12/8 & 48 96 90 X 100 100 100 109 96 100 20 9690 x 100 100 80. 80+8640 + X 100 100 計 100 (1)求める条件つき確率は (Xにかかっている)かつ(陽性) (陽性) で求められるから 4 80 810000 X 80 100 100 100 + 100 100 1218 96 10 x10000 100

解決済み 回答数: 1
数学 高校生

(2)の問題が分かりませんでした。とくに、場合分けの仕方と、なぜ-2,1という数字になるのが理解出来なかったので、詳しく教えてもらえると嬉しいです。

例題 135 絶対値記号を外す 場合に分ける Action» 絶対値記号は、記号内の式の正負で場合分けして外せ 次の式について、xの値によって場合分けして絶対値記号を外せ。 (1)|x-3| Defame (2) |x+2|+|x-1| 思考プロセス 「A (A≧0 のとき) |A|= ◆ 絶対値記号内が 1-A (A < 0 のとき) 10以上ならばそのまま外し、 [負ならば-1倍して外す。 (1)x-3の正負で場合分けする。 (2) |x+2| 1x- ・・・x=1でx-1の正負が変わる の方 (1)(ア)x-30 すなわち x≧3のとき e |x-3|=x-3 ここか 必要 (イ) x-30 すなわち x < 3のとき |x-3|= -(x-3)=-x+3 (ア)=2(イ) 1 (ウ) x x+2負 正 x-1負 負正 1次不等式 x-3の正負によって場合 分けする。 等号は (ア)(イ) のどちらに含めてもよい。 . 3x x X x on Point (ア)(イ)より |-3|- = x3(x≧3のと (2)x2のとき どちらも e x+3 (x <3 のとき) x+2<0, x-1 < 0 であるから |x+2|+|x-1|=(x+2)-(x-1)=-2x-1 (イ) −2≦x<1のとき18-0 正魚 x+2≧0, x-1 < 0 であるから |x+2|+|x-1|= (x+2)-(x-1)=3 (ウ) 1≦x のとき x+2> 0, x-1 ≧0 であるから |x+2|+|x-1|=(x+2)+(x-1)=2x+1 ( (-2x-1 (x <-2 のとき) (ア)~(ウ)より |x+2|+|x-1|=3 (−2≦x< 1 のとき) 【2x+1 (1≦x のとき) Point... 絶対値記号を外す 3つの場合分けで2つ の絶対値記号を同時に外 すことができる。 (ア)(イ) (ウ) x+2(x+2) x+2 |x-1|| -(x-1)|x-1 絶対値記号を外すとき, (1) では x = 3 (ア)(イ) どちらの場合に含めてもよい。 なぜなら、(イ)の場合において, x=3 を代入したとすると |x-3|= -(x-3)=-0=0 となり、(ア)の場合にx=3 を代入した結果と一致するからである。 同様に,(2)においてx = -2は(ア)(イ), x=1は(イ)と(ウ)のどちらの場合に含めて も問題はない。ただし、必ずどちらかには含めなければならない。 io

未解決 回答数: 1