学年

教科

質問の種類

数学 高校生

なぜこうなるのか教えて下さい

256 基本 例題 161 対数不等式の解法 (2) 不等式 10gzx-610gx2≧1 を解け。 CHART & SOLUTION 00000 基本 対数不等式 底を2にそろえると log2x- おき換え [10gax=t]でtの不等式へ 真数の条件、底αと1の大小関係に注意 6 -≧1 底の変換公式 10g2x 6 となり,両辺にを掛けて logzx=t(tは任意の実数,ただしt≠0) とおくと,t-121 の2次不等式の問題に帰着できる。 ただし, tの符号によって不等号の向きが変わるので t0, t<0 で場合分けをする要領で解く。 ...... 基本 例題 162 対 関数y= (logzx)2-1 値を求めよ。 CHART & SOL 対数関数の最大 おき換え10ga logzx=t とおくと、 tのとりうる値の範 底2は1より大き よって,tの値の 解答 対数の真数, 底の条件から x>0 かつ x≠1 1 また logx2= log2x よって,不等式は log2x -≧1 log2x 底を2にそろえる。 x=1 から 10g2x=0) <α>1 のとき,x>1で 生 合 logzx =t とおく log2 すなわち 0 与えられた関数 ④ [1] 10g2x>0 すなわち x>1のとき y=(log ①の両辺に 10gzx を掛けて (logzx)2-610g2x logax>0 よって, y を よって (log2x)-log2x-6≥0 y=t2 <t²-t-6 =(t- ゆえに (logzx+2) (10g2x-3)≧0 (t+2) (t-3) ①の範囲に 10g2x+20 であるから t=3 底2は1より大きいから logzx-30 すなわち 10g2x3 x≥8 10gzx>0から。 t=1 log2xlog28 これは x>1を満たす。 をとる。 [2] 10gzx < 0 すなわち 0<x<1のとき α>1のとき, 10gzx=t t= ①の両辺に 10gzx を掛けて (10gzx)260gzx 0<x<1では10gax< したがっ よって (logzx)2-10g2x6≦0 ゆえに (log2x+2) (10g2x-3)≦0 10gzx-3<0 であるから よって -2≤log2x<0 底2は1より大きいから log2x+20 すなわち 10g2x≧-2 ←10gzx < 0から。 ←logs}\log;x<log! X= をとる。 ≦x<1 これは 0<x<1 を満たす。 [1] [2] から x<1,8≦x PRACTICE 161Ⓡ 不等式 210gx410gx27≦5 を解け。 PRAC (1) の (2) [類 センター試験) を

未解決 回答数: 1
数学 高校生

マーカーを引いた部分が求められる理由を教えてください。 公式などがあるのでしょうか?💦

AA A3 A2 基本 例題 29 無限等比級数の応用 (2) XOY [=60°] の2辺 OX, OY に接する半径1の 円の中心を とする。 線分00 と円0 との交点 を中心とし、 2辺OX, OY に接する円を Oとする。 以下、同じようにして,順に円 03, 0, 00000 Y O₁ 59 A1 253 基本事項 21 を作る。このとき,円 01,02, 求めよ。 X ・・・・・・ の面積の総和を 60° 基本28 2章 4 総和, CHART & SOLUTION 図形と極限 無限級数 用いると,次 えることが +A2A3 2番目と (n+1) 番目の関係を調べて漸化式を作る ① 00+1の半径をそれぞれn, n+1として, n と n+1の関係式 (漸化式) を導く。直角 三角形に注目するとよい。 そして, 数列{r} の一般項を求め, 面積の総和を無限等比級数 の和として求める。 解答 Y 円0mの半径,面積を,それぞれ回 S とする。 円O は 2 辺 OX, OY に 接しているので, 円 0 の中心On は, 2辺 OX, OY から等距離にある。 27 2+1 +...... ar) よって,点0m は XOY の二等分線 上にある。 O.. +1 X H S 30°+1 (0, ar3) +....... +……) をαと JJR これとOm0n+1=00-00n+1 から rn=2rn-2rn+1 ゆえに,XOO=60°÷2=30°であ るから 00=2rn 円とOX との接点 をHとすると, OOH は3辺が 2:1:√3 の からの直角三角形。これ 着目して,n+1 rn 1 きる ゆえに rn+1= またn=1の関係を調べる。 2 n-1 n-1 60° よって- (1/2) したがってSx (1) 30° 00 ゆえに,円 01, O2, の面積の総和 ΣSn は, 初項 π, 公 n=1 比 1/3の無限等比級数である。 141 であるから,無限等 比級数は収束し、その和は π 4 1-1 (初) (公) の PRACTICE 29 3 正方形 Sn, 円 Cn (n=1, 2,.....) を次のように定める。 Cm は Sm に内接し, Sn+1 は 1である。 Cn に内接する。 Sの1辺の長さをαとするとき 円周の総和は [ [工学院大 ]

回答募集中 回答数: 0
数学 高校生

Sx=2√2 Sy=√2 ではダメですか? また、(個)はつける必要がありますか?

222 基本 例題 144 分散,標準偏差 右の表は,ある製品を成型できる2台の工作機械 X, Yの1時間あたりのそれぞれの不良品の数x, y を 5時間にわたって調べたものである。(単位は個) 7 x 3 5 4 5 8 12 y 6 9 85 -12 (1) x, yのデータの平均値, 分散, 標準偏差をそれぞれ求めよ。 ただし、小 数第2位を四捨五入せよ。 (2)x,yのデータについて, 標準偏差によってデータの平均値からの散らば りの度合いを比較せよ。 日以上 p.217 基本事項 CHART O SOLUTION 分散 1 {(x1−x)²+(x2−x)²+......+(xn−x)²} ズ 解答 S= n 2 s2=x^2-(x)2 (2)標準偏差が大きければ,データの平均値からの散らばりの度合いが大きい。 (1)x,yのデータの平均値をそれぞれxyとすると x==(5+4+8+12+6)= 35 = -=7 (個) 5 y=1/12(6+9+8+5+7)=22=7(個) ①は (1) のデータの分散をそれぞれ sx', sy2 とすると 販売数 であることが 40 5 sx2=1/2((5-7)2+(4-7)2+(8-7)+(12-7)2+(6-7)2}=4 -=8 s,²=—-—-((6-7)²+(9-7)²+(8—7)²+(5-7)²+(7-7)²)=10=2 よって,標準偏差は Sx=√8≒2.8(個), sy=√2≒1.4 (個) 別解 分散の求め方 ②を利用 Sx'==(52+42+82+122+62)-72=-72=57-49=8 285 5 255 Sy'===(62+92+82+52+72)-7= - 72=51-49=2 5 (2) (1)から Sx> Sy 料金 (2 ゆえに,xのデータの方が,平均値からの散らばりの度合いが大きいと考えられる。 12 118 141 142 14 PRACTICE 144 ② 右の変量x,yのデータ 2521|18|17|21|26|23|21|200 について,次の問いに答えよ。 ・・・・・・ (1) 変量 x の分散 sと変量y の分散 s,' を求めよ。 y281930 1327 1230 131523 129 281 58 (2)変量 x, y のデータについて,標準偏差によってデータの平均値からの散らばり の度合いを比較せよ。 人間

未解決 回答数: 1
数学 高校生

シャープペンで指してるところの方法の求め方を教えて欲しいです💦 お願いします

So 基本 例題 106 直角三角形と三角比 図のような三角形ABC において,次のものを求めよ。 (1) sine, cos, tan (2) 線分AD, CD の長さ 00000 A W B D 60° p.174 基本事項 1. 重要 110 B 3 C CHART & SOLUTION 基本は直角三角形 暴行 (1)△ABCは∠C=90° の直角三角形であるから, 三角比の定義 (p.174 基本事項 1 ① ) から求められる。 三平方の定理を利用して, 辺 ACの長さを求めておく。 (2) 直角三角形 ADC において,∠ADC=60°の三角比を考える。 175 解答 BC 3 (1) cos = = AB 4 また, 三平方の定理から an AC よって sin0= √7 tan 0= AC=√42-32=√7 √7 AC = AB 4 BC 3 田 (2) 直角三角形 ADC において 13 AC AC sin 60°=- AD から AD=- A sin 60° D cos' mcl 2 AC AC tan 60°= から CD= = =√√√32√72√2104 √3 == 有理化しておく。 3 √7 √21 = AC²+BC2=AB² 5 AC=√AB²-BC² 08-09 (2) AD CD AC 2.1+2.18=0+0=2:1:√√3 から求めてもよい。 なお,最終の答は分母を CD tan 60° √3 3 I 2 POINT 30°, 45°, 60° = 右の表の三角比の値はよく使うの で必ず覚えよう。 0 30° 45° 1 1 sin 30° 444 2 2 1 √3 0203 COS 2 2 45° 60° 1 tan 1 13212 5 60° √3 PRACTICE 106º 右の図において、線分AB, BC, CA の長さを 求めよ。 A 4章 = 12 D 45° 30° B C 三角比の基本

未解決 回答数: 1
数学 高校生

大門1わかりません

の数 る。 また、 n (P) は ∩B) =n(A)+n(B) ■は全体集合 I p.68 69 も参照。 方法 すべて求める。 目の要素がαの集 書き上げ、続いて、 ■の要素がもの集合、 ■合の順に書き上 によい。 りあり, Bの 方がる通り して求めよ。 © 2 集合の要素の個数の計算 全体集合を U = {1, 2, 3, 4, 5, 6,7} とする。 ひの部分集合 (1,3,5,6,7}, B={2, 3, 6,7} について, n (A), n(B), n (A) を求めよ。 Bが全体集合 Uの部分集合でn(U)=50, n (A)=30, (AUB), 集合A, (イ) ANB (ウ) AUB (エ) AnB n(B)=15, n(A∩B)=10 であるとき、 次の集合の要素の個数を求めよ。 CHART & SOLUTION 集合の要素の個数の問題 図をかいて ① 順に求める EN n(A)=n(U) -n (A) を利用する。 ② 方程式を作る 国の方針により, 求めやすいものから順に, 個数定理を用いて集合の要素の個数を求め n (AUB) =n(A)+n(B)-n (A∩B) を利用する。 ②は基本例題3を参照。 入ってないやつ (1) n(A)=5, n(B)=4 AUB={1,2,3,5,6,7} である からn(AUB)=6 = {24} であるからn(A)=2 n(A)=n(U)-n(A) (2) (7) (1) 10 (2) n =50-30=20(個) n(ANB)=n(U)-n(ANB) =50-10=40 (個) (AUB)=n(A)+n(B) - n(ANB) =30+15-10=35 (個) In(ANB)=n(AUB) =n(U) -n (AUB) -40% =50-35=15 (1) ・U 4 A 5 -U(50) A (30) 3 6 7 ANB (10) B OL 00000 2 B (15) p.264 基本事項 1 Js 265 1歳 1 ←左の図のような, 集合の 関係を表す図をベン図 という。 個数定理を利用。 集合の要素の個数 場合の数 ←補集合の要素の個数。 (A∩B)=15 であるとき、 次の集合の要素の個数を求めよ。 (ア) A (イ) ANB(ウ) AUB ド・モルガンの法則 A∩B=AUB (ウ)の結果を利用。 PRACTICE 10 (1) 上の例題 (1) の集合 U, A, B について, n(U), n(B), n(A∩B), n (AUB) を 求めよ。 (②2) 集合 A,Bが全体集合 Uの部分集合でn(U)=80, n(A)=25, n(B)=40, (エ) ANB

未解決 回答数: 1