学年

教科

質問の種類

数学 高校生

大学の過去問なのですが答えがなくて困っています😭 教えて欲しいです🙏🏻🙏🏻🙏🏻

13 解答は、各問題の解答番号に該当する解答用紙の番号の欄に、「ア、イ、ウ・・・」の記号で答 えなさい。 1 次の問いに答えよ。 (1) 環小数 0.63 は分数でどのように表されるか。 次の中から選びなさい。 アx=-5,1 ア (2) 方程式 |x+213の解を次の中から選びなさい。 x = 5 7 a, b 〒30 63 1100 (3) 2つの集合 A. B と空集合 正しい記述を選んだ組み合わせを、次のア~カの中から選べ。 イ a, c ② 放物線Gを表す方程式 a. AUBはAとBの共通部分を表す。 b. A=Bが成立するとき、 AとBの要素が完全に一致する。 CANBAUBが成立する。 d. はどの集合にも属さない。 イ 48 アy = 2x2+4x-3 ウy=2x2+4x-1 オy=2x2-6x-1 アx = 1 7 n ≤3 In >3 数学 (解答番号 1~28) (4) 9000 の正の約数は何個あるか。 次の中から選べ。 7 x==3 イ x = 2 イ x = 1,5 オ x = 1 ウ 36 37 ゥー 63 a, d イx = 3 のうち正しい記述が2つある。 について、次のa~d (800 SPISOS) = b, c I 96 11 ウx = 51 イy=2x²-4x-1 xy=2x2+4x-7 イ<-3 n>-3 ウ x =3 オ 18 ウ x=-1 b, d 次の問いに答えよ。 (1) 二次方程式x-mx-7m-1=0 (mは定数)の解の1つがx=5のとき, この方程式の もう1つの解の値を次の中から選べ。 エx=-2 オ [解答番号1) エ x = 6 [番号] ウn -3 [解答番号 3] (2) 二次方程式x2 + nx + n +3=0 (nは定数) が重解を持つとき、n>0 とすると, この方 程式の解を次の中から選べ。 #c, d [解答番号 4] [解答番号9] [解答番号 10] オ x=-5 (3) 二次方程式x²+x+n+3=0(nは定数) が正の解と負の解をもつとき, nの値を表す ものとして正しいものを次の中から選べ。 [解答番号 11] オx=-3 [解答番号 12] 2 一次関数y=2x2-4x-6 について,次の問いに答えよ。 ENTS ア (-1.0), (-6.0) ウ (-1,0),(3,0) オ (-1,0), (8,0) (2) 二次関数y=2x24x6のグラフの頂点の座標を次の中から選べ ア (2,6) エ (1, -8) ア イ ウ エ オ (3) 二次関数y=2x²-4x-6の定義域が 0≦x≦3である場合,yの最大値と最小値の組み 合わせとして正しいものを次のア~オの中から選べ。 y=xのグラフとx軸との交点の標を次の中から選べて、 ア (2,-11) エ (-2,1) (4) 連立不等式 ①放物線の頂点の座標 最大値 (2x²-3x-5 <0 (1) 角が ア -2≦x<5 エ 2≦x<5 sin0 = 0 0 10 -8 10 二次関数y=2x2-4x-6のグラフを,x軸方向に-2, y 軸方向に5だけ平行移動して 得られる放物線の頂点の座標と, 放物線Gを表す方程式を,それぞれ次の中から選べ ア 次の問いに答えよ。 ①cose ②tan9 ア の解を表すものとして正しいものを次の中から選べ。 1 (0.-6) オ (-1.-8) イ (1,0), (-3.0) (1,0), (-8, 0) 90° < 6 <180° 1 最小値 -8 -6 -6 -26 - 8 イ (0,-1) オ (-1,-3) 1 ウ (06) を満たすとき, cose, tane の値をそれぞれ次の中から選べ。 2 3v5 イ -1 < x < 5 オ 解なし ウ (-3,-3) [解答番号 [5] [解答番号 6] w/N [解答番号 1] [解答番号8] ウ x-2.1 <x<5 [解答番号 13] [解答番号 14] √5 2 オ (2. [解答番号 15] √5 オ

回答募集中 回答数: 0
数学 高校生

この問題でなぜ逆の確認が必要なんですか?x^3の係数は正なので、x=-1で極大値、x=3で極小値をもつことは明らかだと思うのですが、、、(x=-1,3で極値をもつということは、f'(x)=0は、x=-1,3を解にもち、f(x)を微分して得られるf'(x)のx^2の係数は正な... 続きを読む

376 第6章 微分法 Check 例題 208 極値より関数の決定 (足利工業大) 3次関数f(x)=x+ax+bx+c は x=-1 で極大値をとり、x=3 で極小値-25をとる。 定数a,b,cの値と極大値を求めよ. 考え方 与えられた条件より、 増減表をかく. 解答 練習 208 *** Focus x=-1 で極大値をとる f'(-1)=0 で, x=-1 の前後でf'(x) の符号が正か ら負に変わる. x=3 で極小値-25をとる” f'(3)=0, f(3)=-25 で, x=3の前後でf'(x) の 符号が負から正に変わる. また,f'(a)=0 であっても, x=α で極値をとるとは限らない. さらに, 極値が極大値 極小値かの判定もできないので、確認が必要である. x f'(x) + CAN C -1 0 y=f(x) の増減表が右の ようになるときを考える. f(x)=x^3+ax2+bx+c f(x) 極大 より、 f'(x)=3x²+2ax+b 増減表より, f'(-1)=3-2a+b=0 3 0 + 極小 -25 7 ① f'(3) =27+6a+b=0x) (1+x)-..... ② f(3)=27+9a+36+c=-25 ....... 3③ 0-1- ①,②,③を解いて, また,このとき, f(x)=x-3x2-9x+2 斬働く a=-3, b=-9, c=2 f'(x)=3x²-6x-9=3(x+1)(x-3) より 増減表は上のようになり、x=1で極大値、x=3 で極小値-25 を確かにとる。 値は, f(-1)=-1-3+9+2=7 よって a=-3,6=-9, c=2, 極大値7 *** (xx-y=f(x) が x=α で極値をとる ⇒ f'(a)=0 18f'(a)=0 であっても, f(α) は極値とは限らない ① ② からa,bを 求め③に代入する. 求めたa,b,cの値 のときに x=-1 で 極大値、x=3で極 小値-25をとるか 確かめる. 注) 例題208 で, 「x=-1で極小値、x=3で極大値25」という条件でも、④, ② ③の 式が出てくるがそのとき, 求まる or, b,c は、この条件を満たさない。 つまり, ①, ② からは x= -1, 3 で f'(x)=0 となること, ③ からは点 (3, -25) を 通ることしかわからないので、 実際に条件を満たすかどうかの確認が必要である. 注》極値をとるときのxの値x=-1,3は,f'(x)=0 の2つの解であることから,解と 係数の関係を用いてα, b の値を求めてもよい。 例題2 関数 に、定 考え方 (1) 関数f(x)=x3+ax2+bx+cはx=1で極大値2をとり, x=3で極小値 をとる. 定数a,b,cの値を求めよ. (2) 3次関数f(x)=ax+bx+cx+d は x=1, 3 で極値をとるというま た,その極大値は2で極小値は2であるという。このとき、条件を満た す関数 f(x) をすべて求めよ。 p.3890 よ G

回答募集中 回答数: 0
数学 高校生

この問題ではなぜ逆の確認が必要なんですか?x^3の係数は正なので、x=-1で極大値をとり、x=3で極小値をとるのは明らかだと思うのですが、、、

376 第6章 微分法 Check 例題 208 極値より関数の決定 (足利工業大) 3次関数f(x)=x+ax+bx+c は x=-1 で極大値をとり、x=3 で極小値-25をとる。 定数a,b,cの値と極大値を求めよ. 考え方 与えられた条件より、 増減表をかく. 解答 練習 208 *** Focus x=-1 で極大値をとる f'(-1)=0 で, x=-1 の前後でf'(x) の符号が正か ら負に変わる. x=3 で極小値-25をとる” f'(3)=0, f(3)=-25 で, x=3の前後でf'(x) の 符号が負から正に変わる. また,f'(a)=0 であっても, x=α で極値をとるとは限らない. さらに, 極値が極大値 極小値かの判定もできないので、確認が必要である. x f'(x) + CAN C -1 0 y=f(x) の増減表が右の ようになるときを考える. f(x)=x^3+ax2+bx+c f(x) 極大 より、 f'(x)=3x²+2ax+b 増減表より, f'(-1)=3-2a+b=0 3 0 + 極小 -25 7 ① f'(3) =27+6a+b=0x) (1+x)-..... ② f(3)=27+9a+36+c=-25 ....... 3③ 0-1- ①,②,③を解いて, また,このとき, f(x)=x-3x2-9x+2 斬働く a=-3, b=-9, c=2 f'(x)=3x²-6x-9=3(x+1)(x-3) より 増減表は上のようになり、x=1で極大値、x=3 で極小値-25 を確かにとる。 値は, f(-1)=-1-3+9+2=7 よって a=-3,6=-9, c=2, 極大値7 *** (xx-y=f(x) が x=α で極値をとる ⇒ f'(a)=0 18f'(a)=0 であっても, f(α) は極値とは限らない ① ② からa,bを 求め③に代入する. 求めたa,b,cの値 のときに x=-1 で 極大値、x=3で極 小値-25をとるか 確かめる. 注) 例題208 で, 「x=-1で極小値、x=3で極大値25」という条件でも、④, ② ③の 式が出てくるがそのとき, 求まる or, b,c は、この条件を満たさない。 つまり, ①, ② からは x= -1, 3 で f'(x)=0 となること, ③ からは点 (3, -25) を 通ることしかわからないので、 実際に条件を満たすかどうかの確認が必要である. 注》極値をとるときのxの値x=-1,3は,f'(x)=0 の2つの解であることから,解と 係数の関係を用いてα, b の値を求めてもよい。 例題2 関数 に、定 考え方 (1) 関数f(x)=x3+ax2+bx+cはx=1で極大値2をとり, x=3で極小値 をとる. 定数a,b,cの値を求めよ. (2) 3次関数f(x)=ax+bx+cx+d は x=1, 3 で極値をとるというま た,その極大値は2で極小値は2であるという。このとき、条件を満た す関数 f(x) をすべて求めよ。 p.3890 よ G

回答募集中 回答数: 0