学年

教科

質問の種類

数学 高校生

解答の 3行目の4=5×0… となる理由がよくわかりません。右にあるヒントに5×整数とあり、整数をかけている、というのはわかるのですが、かける整数はなんでもいいのでしょうか?0と2をかけた理由はあるのでしょうか?教えてほしいです🙇‍♀️早めにお願いします!!

■ 第3章 集合と命 Think 例題 93 集合の相等の証明書の **** Zを整数全体の集合とするとき,次の集合A, B は等しいことを証明せよ。 A={4x+3ylxEZ, y∈Z}, B={5x+2yxZ, yEZ} BCA A=B 考え方 ACB -U- A=B、 B A かつ ⇔ A=B (2つの集合の相等)の証明は, ACB と BCA の双方を示す。 ACB の証明は、任意の整数x,yに対して,次のように表せることを示す。 4x+3y=5×(整数)+2×(整数) BCA の証明も同じ方法による. 解答 (i) 集合Aの任意の要素を α=4x+3y (xEZ, yEZ) とする. 4=5×0+2×2,3=5×1+2×(-1) より =(5×0+2×2)x+{5×1+2×(-1)}y =5y+2(2x-y) xEZ, yEZ より 2x-yEZ であるから, αEB したがって, ACB が成り立つ. (ii) 集合Bの任意の要素を, B=5x+2y (xEZ, yEZ) とする. 5=4×2+3×(-1), 2=4×(-1)+3×2 より, B={4×2+3×(-1)}x+{4×(-1)+3×2}y =4(2x-y)+3(-x+2y) xEZ, yEZ より 2x-yEZ -x+2yEZ であ るから, BEA したがって, BCA が成り立つ. (i), (i)より, ACB かつ BCA であるから, A=B が成り立つ Focus 注 ACB の証明 4x+3y =5×(整数)+2×(整数) の形で表すために, 4 と3を 5×(整数)+2×(整数) の形で表す. 4=5×2+2×(-3) などとしてもよい。 BCA の証明 5x+2y =4×(整数)+3×(整数) の形で表すために, 5 と2を 4×(整数)+3×(整数) の形で表す. A=B(2つの集合の相等)の証明は, ACB かつ BCA を示す 4×1+3×(-1)=1 より 4×n+3×(-n)=n つまり、x=n,y=-n のとき, 4x+3y=n 5×1+2×(-2)=1 より 5×n+2×(-2n)=n つまり、x=n, y=-2n のとき, 5x+2y=n となるので,A,Bはともに整数全体になる. 柚羽

回答募集中 回答数: 0
数学 高校生

解答の3行目と4行目がなんでこうなるのか教えて欲しいです!!

104 第4章 三角関数 基礎問 精講 63 三角方程式 < Osa SBSπとするとき cos(-a)=s COS をαで表せ. この問題は数学Ⅰの範囲でも解けますが、弧度法の利用になれる。 とも含めて、数学IIの問題として勉強します。 この方程式は三角方程式の中では一番難しいタイプで,種類 (sin, cos) も角度 ( α, β) も異なります. このタイプは,まず種類を統一 a =sinα を用いて, sinα = cos 2β ...... ① をみたす ならば一になります。この問題では 20 たとえば,右図の位置に動径があるとき,角度の 呼び方は, 与えられた範囲によって変わります。 もし、00<2ならばだし、一ヶ≦0<x 105 YA 11 0 01/11となっているので2=αと 2π (別解) cos2β=cos( 和積の公式より, ることです。そのための道具が cos Cos (フレーム) =sina で,これでCos にて きます。そのあとは2つの考え方があります。 =0 . sin (3+42) 0 または,sin (B-1+1/2) = 0 0<-≤1, os(a)より、cos2β-cos ( -2sin(+4) sin(B-4+ -(-a)になります。一αを音と考えてみたらわかるはずです。 cos (-a)=0 57 参照 = 0 解答 COS cos(-a) =sina より,①は, sind=cos(-a) sind= cos2β YA ここで,/ cos 28-cos(-a) m DEBET 2 0≤28≤2π, 0<-α≤ 右の単位円より, a π 3π -α, +α mi 2 = -1 0 B より 5π 0<ẞ+---+<* 4 2 4' 42 B+4号πB-+号-0 =π, 2 よって、B-2+1.41 β= π a 2'42 注 どちらの解答がよいかという勉強ではなく,どちらともできるよ うにしておきましょう. 特に, 数学Ⅲが必要な人は,和積の公式を頻 繁に使うことになるので,その意味でも (別解)は必要です。 ポイント 種類も角度も異なる三角方程式は 注参照 まず, 種類を統一する a + 3π 4 2'4 2 +α - 17 -α) と表現してはいけません。それはOS2Bだ 演習問題 63 からです。--+=+α 現です. 3 +αがこの範囲においては正しい表 櫻 (0) 第4章 as, OSBSとするとき, sincos2β をみたすβを αで表せ.

回答募集中 回答数: 0