学年

教科

質問の種類

数学 高校生

数Ⅲ 基精 40(2) Y=f(x)とY=f^−1(x)の凹凸が異なりかつY=Xに関して対象というのはどのように判断すれば良いのでしょうか??🙇🏻‍♀️

第3章 いろいろな関数 問 68 40 逆関数 f(x)=var-2-1 (a>0x とするとき, 次の問いに答えよ、 f(x)の逆関数y=f(x) を求めよ. ② 曲線 C:y=f(x) と曲線 C2y=f(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,Cの交点の座標の差が2であるとき, αの値を求めよ。 講 <逆関数の求め方〉 y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかんよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる <逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,I 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき ポイントになります。 リーェに関して で交わる」こと fy-f(x) E よって、 2次 すなわち、エ 範囲で異な 求める。 そこで、 この2次 ( I A a>0. : a (3) (2) の B- a (別解) (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より 値域は y≧-1 ここで,両辺を2乗して, ポ 1大切!! ax-2=(y+1)2 .. X=- x = 1 (y+1)²+²² (y≥ −1) 定義域と値域は入れ かわる 演習問 a a £ɔT, ƒ¯¹(x)=±±²(x+1)²+²±²² (x≥−1) 2 a 注 「定義域を求めよ」とはかいていないので,「r≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、この範囲,すなわち, 定義域が 「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません。 (2)y=f(x)とy=f(x) のグラフは,凹凸が異なり,かつ,直線

回答募集中 回答数: 0
数学 高校生

サがわかりません。 3枚目に蛍光ペンを引いているのですが、なぜq になるのかがわかりません。私は学校で解いた時CD両方y座標が-9だからという理由で-9にしました… 問題が長くてすみませんがどなたかよろしくお願いします🙇‍♀️

太郎さんと花子さんは,先生から出された次の問題について考えている。 問題 座標平面上に5点A(1,6), B(2,7), C(-2,-9), D(-4,-9), E (-7,21) がある。 (i) 2次関数y=f(x) のグラフが, 3点 A, B, Cを通る。 f(x) を求めよ。 (ii) 2次関数y=g(x)のグラフが, 3点C,D,Eを通る。 g(x) を求めよ。 太郎: f(x) は 2次関数だとわかっているから,f(x)=ax2+bx+c とおいて計算すれば, a,b,c の値を求めることができそうだね。 花子: f(x)は2次関数だから、 ア という条件が必要だよ。 太郎: そうだったね。 3点を通る条件が順に a+b+c= イ ウ a+ I |b+c=7 オ a- カ b+c=-9 だから、この連立方程式を解くと, α = キク 6ケ C= と求まるね。 でも, (ii)で同じことをしようとすると, 計算が面倒だね。 花子 2次関数のグラフの対称性を使うともう少しうまくできそうだね。 太郎 : たしかに, 2点C, Dのy座標が等しいということから g(x)= サ とすることができるね。 花子: g(x) = | サ とした方が, (i)と同じようにするよりも計算が楽にできそうだね。 (1)~コに当てはまる数を求めよ。 ア の解答群 ⑩ a=1 ① a=-2 2a=0 ③a> o ④ a<0 サ の解答群 ⑩ d(x-3)2-9 ① d(x-3)2 +q ② d(x+3)2-9 ③ d(x+3) +q 1

解決済み 回答数: 1