学年

教科

質問の種類

数学 高校生

⑶で最後のpの倍数の個数を求める式がよくわかりません。

例題260 互いに素な自然数の個数 を自然数とする.m≦nでmとnが互いに素である自然数mの個数 をf(n) とするとき、 次の問いに答えよ. (1) f (15) を求めよ. (2) f (pg) を求めよ.ただし, p, g は異なる素数とする. (3) f(p) を求めよ.ただし、pは素数, kは自然数とする. (名古屋大・改) 考え方 (1) 「m≦nでmとnが互いに素である自然数mの個数をf(n) とする」とはどう いうことかを(1) の f (15) をもとにして考えてみる. f(15) はn=15 の場合であるから, ☆「m≦15 でmと15が互いに素である自然数mの個数は (15) となる。 つまり, (1)を言い換えると次のようになる. 合 (1) 15=3.5 であるから, 15と互いに素でない自然数, すなわち, 3の倍数または5の倍数であり, 15以下の 自然数は, 3,6,9,12, 15,510の7個である. よって, 15 と互いに素な自然数の個数は, f(15)=15-7=8 もつやっ魂 (2) gは異なる素数であるから、 pg と互いに素でな い自然数, すなわち, pの倍数またはgの倍数であり, 以下の自然数は, ①の倍数 10 2.⑩..... (q-1)0, HTA 教えた 「15 以下の自然数で15と互いに素である自然数はいくつあるか」 (2)(1)では,15=3・5 であった.(2)ではggは互いに素より(1)と同様にして 考えてみる. 個 ⑨の倍数 1⑨ 2.⑦ .…... (p-1) @カ@のか個 が互いに 3Mの数) ⑩9の倍数 1 SCAND り (q+p-1) 1 よって, bg と互いに素な自然数の個数は 1.2.3.....pa f(pq)=pa(g+p-1) Focus の 個 P9以下の自然数の **** = pg-p-g+1=(-1)(g-1) (3) p, kは自然数であるから, が以下の自然数は CHA (1.2.3.....PR) 個ある. pは素数であるから,以下の自然数の倍数 は全部で, pp=1個) 123 したがって, f(p")=pk-pk-1 練習 260 (g)とする. *** 「互いに素である」の 否定 「互いに素でな い」 を考える. 5 (1) を一般的に考える. p=3,g=5 としてみ ると見通しがよくなる. pg÷p=g(個) pg÷g=p(個) (1) f(77) を求めよ. (2) f (pg) = 24 となる p, g の組をすべて求め上 pg 以下の自然数 の倍数 STY 互いに素である自然数の個数は、補集合の考えを利用せよ ☆互いに素でない(1以外に共通の縞ある)もの数える 9の倍数 P9の倍数 (p.185 例題 94 参照) f(n) をオイラー関数 という. (p.538 Column 参照) ががが(-1) 例題260 の f (n) について次の問いに答えよ. ただし, p, g は異なる素数 改) 12 女 (c た C

回答募集中 回答数: 0
数学 高校生

63. 記述に問題点等ありますか??

る確率 機械 63 良品 械 A を当 の意 製造 3 50 ベイズの定理 重要 例題 63 袋には赤球10個,白球5個,青球3個;袋Bには赤球8個,白球4個,青球 00000 ;袋Cには赤球4個,白球3個,青球5個が入っている 1 3つの袋から1つの袋を選び, その袋から球を1個取り出したところ白球であっ それが袋Aから取り出された球である確率を求めよ。 した。 袋Aを選ぶという事象をA, 白球を取り出すという事象をWとすると, 求める確率は P(WNA) 条件付き確率Pw (A)= よって、P(W),P(A∩W)がわかればよい。まず,事象 Wを3つの排反事象 [1] A から白球を取り出す,[2] B から白球を取り出す, [3] C から白球を取り出す に分けて, P(W) を計算することから始める。 また P(A∩W)=P(A)P(W) 袋 A, B, C を選ぶという事象をそれぞれ A, B, C とし, 白球 | ⑩ 複雑な事象 を取り出すという事象をWとすると 排反な事象に分ける P(W)=P(A∩W)+P(B∩W) + P(COW) 1 1 5 3 18 よって 求める確率は =P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 1 5 + 3-2 2-3 41 +2²7 + 1/²2 - 11 12 54 4 + 1 4 3 18 検討 ベイズの定理 上の例題から、Pw (A)= AMB, A₂B, 一致し,PB (Ak)= P(W) である。・・・・・・・・・ Pw(A) = P(ANW) _ P(A)PÂ(W) _ 5 P(W) P(W) 54 . P(B) ·|· P(B) 1 10 4 27 加法定理 乗法定理 基本 62 A B C AOW BOW Cow 2 27 W 5 542 P(A)PA (W) P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 一般に, n個の事象 A1, A2, ・・・・・・, An が互いに排反であり, そのうちの1つが必ず起こるもの とする。このとき 任意の事象B に対して,次のことが成り立つ。 PB(AR)= P(Ah) PAN (B) (k=1,2,.., n) P(A)PA,(B)+P(A2)P,(B)+......+P(A)Pa,(B) | これをベイズの定理という。このことは, B=(A∩B) U(A20B) U......U (A∩B) で, A∩Bは互いに排反であることから、上の式の右辺の分母が P(B) と一 P(B∩Ak)P(A∩B) かつP(A∩B)=P(Ak) Pa, (B)から導かれる。 001 が成り立つ。 14 12 A-0004 練習 =) 45 (1 63 仕入れた比率は4:3:2であり, 製品が不良品である比率はそれぞれ3%, 4%, ある電器店が A 社, B 社 C社から同じ製品を仕入れた。 A社、B社、C社から | 5%であるという。 いま、大量にある3社の製品をよく混ぜ,その中から任意に1 [類 広島修道大] (p.395 EX46 |個抜き取って調べたところ, 不良品であった。 これがB社から仕入れたものであ る確率を求め 393 2章 9 条件付き確率 る る る る。 立つ。 である である m-1) 倍数で である 1, 2) ったと 灼数は, あるな を満 には, ①へ。 14234 n進 という。

回答募集中 回答数: 0
数学 高校生

141.2 どこか記述に問題あったりしますか?

222 基本例題 141 三角比を含む対称式・交代式の値 √2 2 sin0+ cos0= (1) sin Ocose, sin'0+ cos' 0 解答 指針▷ (1) の sin @cos 0, sin+cos' 0 はともに, sin 0, cos 0 の対称式 (p.32, p.50 参照)。 →和sin0+cos 0 積 sin Ocos0の値を利用して, 式の値を求める。 ......... (1)(sin Acos 0)条件の等式の両辺を2乗すると, sin²0+ cos20 と sin Ocos0 が現れ る。 かくれた条件 sin ²0+ cos20=1 を利用。 >6>0 [0€K<<== /2 (1) sin0+cos0= の両辺を2乗すると 2 sin²0+2sin@cos0+cos²0=1/2 (0° 0 <180°) のとき, 次の式の値を求めよ。 (2) sino-cose, tan0- ゆえに よって また (sin'0+cos30) a²+b^²=(a+b)(a²−ab+b2)を利用。 (2) sin-cose については、 まず (sin 0- cos 0)' の値を求める。 0°<B <180° と (1) の結 果から, sin0-cos 0 の符号に注意。 = よって②から sinocos0=-- sin³0+cos³0 = (sin 0+cos 0) (sin²0-sin cos 0+ cos²0) 30 -√(1-(-1))-5√/2 (2)0°<<180° では sin0>0であるから, ① より cos0<0 ゆえに sin0-cos0 > 0 ② ①から (sin0-cos0)^=1-2sin/cos0= 12/10 -√²/²=4 tan 0- 1 sin0-cos0= 1 tan 0 = .. 1+2sinocos0= ① sin cos 0 cos o sin 8 (sin0+cos0) (sino-cos 0) sin²0-cos²0 sinocoso 00000 sinocos0 [類 広島修道大] 1 tan 0 √2 - 42.16+ (-1)=-2/3 √6 = -2√3 |基本 27,140 ab や '+b²のように, a と を入れ替えてももとの式と 同じになる式を, a bの対 称式という。 <「‥.」 は 「ゆえに」 を表す記 号である。 ◄sin³0+cos³0 = (sin0+cos0) 3sin/cos0 (sin0+cost) から求めてもよい。 - 1/ <0. sinocos0=- sin0>0であるから cos 0 < 0 sin 0 cos 0 <tan0= sin 0, cos 0 の式に直す。 求めた sin @cos 0 sin0-coseの値を利用。 を利用して,

回答募集中 回答数: 0