学年

教科

質問の種類

数学 高校生

この問題の(3)の除外点が (0,2)になる理由がどうしてもわからないので教えてください!

第3章 基礎問 76 第3章 図形と式 47 軌跡(V) mを実数とする.ry 平面上の2直線 mx-y=0① ついて、次の問いに答えよ。 ことはないので(), (0, 2) は含まれない よって、求める軌跡は x+my-2m-20 ・・・・・ 円 (x-1)^(-1)=2から. 点 (0.2) を除いたもの. 注 一般に、mz+n型直線は、軸と平行な直線は表せません。 それは、の頃に文字がないので,m, nにどんな数値を代入しても (1) ①,②はmの値にかかわらず,それぞれ定点 A,Bを A. Bの座標を求めよ。 (2) ① ②は直交することを示せ、 ( ①②の交点の軌跡を求めよ。 (1) 「mの値にかかわらず」 とあるので,「m について整理 についての恒等式と考えます。 (37) (2) ② が 「y」 の形にできません. (36) (3) ①②の交点の座標を求めて、 45 のマネをするとかなり大変です。 (90) したがって,(1),(2)を利用することを考えます。このと Qを忘れてはいけません。 答 (1)の値にかかわらずmr-y=0 が成りたつとき,エーリ=0 A(0, 0). ②より(y-2)+(x-2)=0 だから B(2.2) (2)1+(-1)=0 だから,bile mについて整理 36 が必ず残って、kの形にできないからです。逆に,の頭には文 がついているので,m=0 を代入すれば,y=nという形にでき, 軸に平行な直線を表すことができます。 45の要領で①②の交点を求めてみると. 2(1+m) 1+m 2m(1+m) y= 1+m となり、まともにmを消去しようとすると容易ではなく、除外点を見つける こともタイヘンです。 もしも誘導がなければ次のような解答ができます。 こ れが普通の解答です。 で割りたいの 0 のとき,① より m= y I でイキ0,0 ②に代入して+ y2-24-2=0 で場合分け I I (x-1)+(y-1)=2 +y2-2y-2x=0 次に=0 のとき, ①より,v=0 これを②に代入すると,m=-1となり実数が存在するので、 点 (0, 0) は適する。 以上のことより, ① ②の交点の軌跡は円 (x-1)+(y-1)=2 から点 (0.2) を除いたもの. ●ポイント 定点を通る2直線が直交しているとき,その交点は, ある円周上にある. その際. 除外点に注意する ①.②は直交する. ゆ (3) da+bb2=0 (3) (1) (2)より ① ② の交点をPとすると ① 1 ② より, ∠APB-90° 314 よって、円周角と中心角の関係よりPは2点A, Bを直径の両端とする円周上にある. この円の中 演習問題 47 心は ABの中点で(1.1) また,AB=2√2 より 半径は√2 よって、 (x-1)2+(y-1)^2 ここで,①はy軸と一致することはなく、②は直線y=2と一致する tを実数とする. ry平面上の2直線:tr-y=t, mx+ty=2t+1 について. 次の問いに答えよ. (1)の値にかかわらず, 4mはそれぞれ, 定点A,Bを通る. A,Bの座標を求めよ. (2) lm の交点Pの軌跡を求めよ.

解決済み 回答数: 1
数学 高校生

共通テスト2022年の数1A 大問2の(4)のグラフが図2のようになるのはなぜですか??

x=3店、 重解をもち、 Dとすると、Di=0とな くと 公式より 2022年度 数学Ⅰ・A/本試験 <解答>9 の値を1から増加させたとき、③のグラフの頂点の座標の値-12gは単調に減 1 少し、頂点のy座標の値 26 も単調に減少するから, ④ のグラフは左下方向 へ移動する。 よって、④のグラフの移動の様子を示すと ① (4)5g<9 とする。 →力となる。 g=5のとき,(2)の計算過程により, ③とx軸との共有点のx座標はx=1.5であ り④とx軸との共有点のx座標はx= 1, -6であるから, ③ ④ のグラフは図1 のようになる。 99のとき、(2)の計算過程により,③とx軸との共有点のx座標はx=3であり、 す実数xの個数は、 ると、D2=0 となるから とはない。 つねに直線x=3上 ラフは ④とx軸との共有点のx座標はx=9 -9±√105 2 -であるから, ③ ④ のグラフは図3 のようになる。 (3)の結果よりの値を5から9まで増加させたとき,③のグラフは上方向 へ移動し、④のグラフは左下方向へ移動することも合わせて考慮すると5<g<9 のとき、③④のグラフは図2のようになる。 集合 A ={x|x2-6x+q<0}, B={xlx2+qx-6 <0} は図2の赤色部分のようになり, 「x∈A⇒xEB」は偽, 「xEB⇒xEA」は偽だから,xEA は,xEBである ための必要条件でも十分条件でもない。 (3 図1 (g=5) My 図2 (5<g<9) B A -6 O /5 気づけ が 動 図3 (q=9) ③ -9-105 2 A BEB なので、CA で O3 x -9+√105 20 1 麦

回答募集中 回答数: 0
数学 高校生

(3)についてです。 私は図に三角関数のグラフを書いてまとめようとしたのですが、 ①写真の2枚目と3枚目のように範囲を決める理由がわかりません。求めなくてもいけるのでは?と思って私はやらなかったのですが、必要な理由を教えてください。 ②『かつ』と『または』が選択肢にあっ... 続きを読む

オ エ (2) 次の図の斜線部分 (境界を含む) を表す不等式は, I (n=0, ±1, 2, ...) と表すことができ、これを三角関数を用いて表すと, オ である。 3 12 0 ーπ 27 -3 については、最も適当なものを、次の①~⑦のうちから一つ選べ。 © (n-1) x ≤ y ≤ n nπ ①nx ≤ y ≤ (n+2/21) π ② (n-1) y ≤NT ③ ni My ≦ (n+1) ④ (2n-1/12) rsys2n (5 2nzsys (2n+1/2)π (2n-1) ≤ y ≤ 2nn 2nny(2n+1)л については、最も適当なものを、次の①~⑦のうちから一つ選べ。 I sin y y ≤ sin x sin y ≤ 0 sin zy ≤0 x≧ siny y ≥ sin x sin y ≥0 sinny O (数学Ⅱ 第1問は次ページに続く。) (3)二つの不等式を組み合わせることで、一つの不等式だけを用いたときよりも複雑 な模様をつくることができる。 次の図の斜線部分 (境界を含む) は, を図示したものである。 を満たす点(x, y) の存在する範囲 y I 27 カ については、最も適当なものを、次の①~⑦のうちから一つ選べ。 O O sinx0 かつ sin y ≤0 ① sinx ≦ 0 または sin y ≦0 sin≦0 かつ sin y ≧ 0 ③ sinx≦0 または siny≧0 sin≧0 かつ siny ≦0 sinx≧0 かつ sin y ≧ 0 sinx≧0 または siny 0 sinx≧0 または sin y ≧0 (数学Ⅱ 第1問は次ページ

解決済み 回答数: 1
数学 高校生

波線ところから分からないので教えて欲しいです🙇‍♀️

領域問題② ② [2016 名城大] xy 平面上に、2本の半直線l: y=x(x2), my=-x (x≦0) がある。 l上を点P (+1, t+1) (t-1) が動き, m上を点Q (t-1, -1+1) (t≦1) が動く。 (1)直線 PQ の方程式をを用いて表せ。 1 -x2+1に接することを示せ。 (2) PQ はもの値によらず、常に放物線y=1/2x2 (3)tの値が1st1の範囲で変化するとき、 線分 PQ が動いてできる領域を求め, 図示せよ。 解説 asyson+1 [1] [2] から, a を xにおき換えて、線分 PQ いてできる領域を表す不等式は −2≦x<0 のとき -*Sys+1 0≦x≦2 のとき xsys +1 が動 これを図示すると、 右の図の斜線部分である。 ただし、境界線を含む。 (1) 直線 PQ の方程式は -t+1-(t+1) y-(t+1)= -{x-(t+1)} t-1-(t+1) ゆえに y=t{x-(t+1)}+t+1 よって y=tx-f2+1 (2) y=ax2+1とy=1/2x2+1を連立させて x²+1=tx-t²+1 ゆえに x2-4tx+4t2=0 よって (x-2)²=0 この方程式はtの値によらず、常にx=2tを重解にもつ。 1 したがって, 直線 PQはtの値によらず, 常に放物線y=-x'+1に接する。 4 (3) 線分 PQ の方程式は、 (1) から y=tx-t2+1 t-1≦x+1) ここでαを定数とし、直線x=αと線分 PQ の交点の座標をtの関数と考え、こ れをf(t) とすると f(t)=ta-t+1=-f+at+1=(t-1)+10 -3 a² +1 x=α と固定するときのの条件は 11... P かつ t-1≦a≦t+1 すなわち a-1≦tsa+1 ② ①,② から、点(a,t)の存在範囲は、 右の図の網の 部分のようになる。 ただし、境界線を含む。) t=a+1 したがって、 ①と②の共通範囲は -2 [1] −2≦a<0 のとき -1≤t≤a+1 ....... ③ O 2 a [2]02 のとき a-1≤t≤1 ・・・・・・・ ④ t= ここで,y=f(t) のグラフの軸は直線t=2 である 2 が、これは区間 ③区間 ④のそれぞれの中央の値 に一致する。 yのとりうる値の範囲を調べると [1] −2≦a<0 のとき 人 t=a-1 a yはt=-1, a+1で最小: 1=1/27 で最大となる。 f(-1)=f(a+1)=-a, a² -a≤y≤+1 [2] 0≦a≦2 のとき (1)=9 2 100 a² +1であるから,yのとりうる値の範囲は yはt=1, a-1で最小;t=1/2で最大となる。 f(1)=f(a-1)=α であるから, yのとりうる値の範囲は

回答募集中 回答数: 0