学年

教科

質問の種類

数学 高校生

この問題の2枚目の式の解き方が分かりません!誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

-88 (106) 第1章 数列 例題 B1.52n=k-1, k を仮定する数学的帰納法 **** x=t+1 とし,P,=1+ t" 1 とおく (n=1,2,・・・・・). このとき, P は x 考え方 解答 t 次の多項式で表されることを示せ. 自然数nに関する証明については, 数学的帰納法を用いる. まずはオーソドックスに 考えてみよう. (証明) (1) n=1 のとき,P,=t+1=x より成り立つ. (I)n=k のとき,Px=+==(xk次の多項式)と仮定すると, 1 n=k+1 のとき, Pato=t+1+- (+)-(++) (+)- =xPk-Pk-1 ここで,Px=(xk次の多項式) と仮定しているから,xPはxの(k+1)次の多項式で ある.しかし,P-」については,何次式なのか、xの多項式なのかもわからないつまり、 P& だけではなく、Pa」の次数についても仮定が必要になる.また,(II)で, n=k-1 とすると, n=1, 2,......であるから,k-1≧1 より k≧2 でなければならない。 wwwwwwwwwwwwww m (I) n=1 のとき,P,=t+==xより成り立つ. n=2のとき,P2=f+ 2=x2 より題意は成り立つ. (II)n=k-1,k(k≧2) について, 題意が成り立つと仮定する. IPkxの次の多項式 「Pk-1 は xの(k-1) 次の多項式 すなわち, で表されると仮定すると, Pati=tk+1+- tk-1. tk-1 =xPk-Pk-1 ここで, xPk は x×(xk次の多項式)より, xの (k+1) 次の多項式となり,P-1 は xの(k-1)| 次の多項式であるから, Pk+1 は xの (k+1) 次の 多項式となる. Ph-1 は xの (k-1) 次の多 式より, Pk+1 よって, n=k+1 のときも題意は成り立つ. (I) (II)より, すべての自然数nについて題意は成り =(x (k+1) 次の多項式 (x (k-1)次の多項 立つ 注》(I)でPがxの1次の多項式であることだけを示し, (II)の一般的な方法で, P2が 2次の多項式であることを示そうとすると, Po, P, が必要となり困る. (Poは定 れていない.)よって, (I)でP2 も調べておく必要がある. なお、下の練習 B1.52は, フィボナッチ数列の一般項に関する問題である. (p.B1-74 52 自然数とするとき.4.1/5(1+2)-1/5(25) は整数である

解決済み 回答数: 1
数学 高校生

この問題の2枚目の式のところの7m+7の7の部分はどこに行ったのでしょうか?誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

36 (104) 第1章 数 列 例題 B1.50 数学的帰納法 (3) 命題の証明 **** ”を2以上の自然数とするとき、パー"が7の倍数であることを数字を 帰納法によって証明せよ. 考え方 n-nが7の倍数 n-n=7×(整数) となる.このことを数学的帰納法を使って証明する. 解答) nin.......① とおく. (I) n=2 のとき, n-n=27-2 =126=7・18 よって, n=2のとき ① は7の倍数である. (II)(2)のとき ①が7の倍数であると仮定す ると, k-k=7m(m は整数) とおける. (日本女子大) 例 2以上の なので、最初の 2である. 考 このとき, n=k+1 のときの (k+1)-(k+1)が7 の倍数であることを示す. (k+1)^-(k+1) =k+Ck+C2k+7C3k+7C4k³+7C5k²+7C6k +1 -(k+1) (k+1)^(k+1) =7X (整数) となることを示 k-kは仮定より 7の倍数, =k+7k+21k+35k+35k+21k2+7k-k =(k-k)+7(k+3k + 5k+5k+3k+k) =7m+7(k+3k+5k+5k+3k+k) =7(m+k+3k+5k+5k+3k+k) ここで,m+k+3k+5k+5k+3k+k は整数なの で, (k+1)-(+1) は7の倍数である. 7(k+......)も 7の倍数 したがって, n=k+1 のときも①は7の倍数である. (I),(II)より,2以上のすべての自然数nについて ① は 7 の倍数である. Focus 自然数nに関する証明に数学的帰納法は有効である 注》整数αの倍数は,n (整数) を用いてan と表せる。 「αで割り切れる」 「α を約数にもつ」 「an と表せる」 となる. すべての自然数nについて, 22+6n-1 で割り切れることを証明せよ。

解決済み 回答数: 1
数学 高校生

この問題の④がn=1の時も成り立つとありますが、どこで成り立っているのかが分かりません!誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

B1-40 (58) 第1章 数 列 Think ○見るたり多度 例題 B1.27 いろいろな数列の和 ( 2 ) Sm=1−22+32-4'++ (−1)" を求めよ. 解答) その和を分けて考える必要がある. nが偶数、つまり=2mmは自然数のとき、 wwwwwww wwwwwwwwwwwwwww Sam=1-2+3-4++ (2m-1)-(2m)2 2m III Colu nが奇数、つまり=2m+1のとき =(12−22)+(32-4°)+…+{(2m-1)-(2m)2} 第 m項 S2m+1=1-2°+32-4°++ (2m-1)-(2m)+(2m+1)2 =(12-2)+(3°-4°)+…+{(2m-1)-(2m)2}+(2m+1)2 nが偶数のとき, n=2mmは自然数) とおくと, wwwwwwwwwwwwwww. Sm=S2m=(12−22)+(3-4)+…+{(2m-1)-(2m)2} ={(k-1)-(2k)}=2(-4k+1) k=1 第 (2m+1)項 いう m 第3項 こ①初う例 n=2,4,6 数列 {(2m-1)^- 初項から第 =-4mm(m+1)+m=-m(2m+1) n=2mより,m=in を①に代入して, == S,=-1/2"(n+1) ② __(n+1) での和と考える 和はnで表す っちの方 ○かりやよい wwwwwwwwwww nが奇数のとき,n=2m+1(mは自然数) とおくと, Sw=Szm+1= (12-2) + (3-4) +...・・・ +{(2m+1)-(2m)2}+(2m+1)^ =Szm+(2m+1)=-m(2m+1)+(2m+1)2 (m+1)(2m+1) (3 n=2m+1より,m= (n-1) を③ に代入して, S.=2+1/2)(n-1+1)=1/2m(n+1)……③ ④は n=1のときも成り立つ. よって,②④より, Focus n=3,5,7, n=1 とすると 1/12=1 Sn=(-1)+12 n(n+1) 場合 この形のままでもよ nが偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2m+1 練習 一般項am=(-1)n(n+1) で定められる数列の和 B1.27 S„=a+a2+α+... + α を求めよ. ***

解決済み 回答数: 1
数学 高校生

一枚目の問題の解答2の赤線部分と二枚目の解説欄なんですけど、一枚目の問題はKを使ってmを表した後C nにそのまま用いてないのに、二枚目の問題はなぜすぐに用いることができるんですか?

[考え方 例題 B1.6 2つの等差数列に共通な数列 **** 初項4,公差3の等差数列{an} と,初項 200, 公差 5 の等差数列{b} がある. 数列{a} と数列{bm} の共通項を,小さい方から順に並べてでき る数列{cm}の一般項と総和を求めよ。 B1-9 第1章 【解答 1 数列{a} と数列{bm} の正の項を小さい順に並べた数列{d} を書き出すと、数列 {cm} の初項がみつかり、数列{cmの規則性もわかる』 解答 1 解答2 (数列{a} の第l項)=(数列{bm} の第m項)として,自然数 em の関係式を 求め, l m のいずれかを自然数で表す. {a}:4,7,10, 13, 16, 19, 22, 25, 28, 数列{bm} の正の項を小さい順に並べた数列{d} は, {dn}: 5,10,15,20,25,30, よって, 共通項の数列{ch} の初項は10 数列{a} の公差は3, 数列{d} の公差は5であるから, 数列{cm}は3と5の最小公倍数 15 を公差とする等差数 列である. よって, 数列{cm} の一般項は, cn=10+(n-1)×15=15n-5 また, 10≦cm≦200 より, 10≦15η-5≦200 41 したがって, 1≦n- より n=1,2, 3 ..... 13 よって、数列{c} の総和は, 解答 2 =4+(n-1)×3=3n+1 113{2×10+(13-1)×15}=1300 b=200+(n-1)×(-5)=-5n+205 すると, 3ℓ+1=-5m +205 201 an=4+(n-1)・3 =3n+1 b=200+(n-1)・(-5) =-5n+205 b>0 となるnの値は, n≦40 より, 数列{dn} は, d=640=5で,公差は5 {cm} は初項 c1=10 以上, {bm} の初項 200 以下であ る。 S,=1/2n{2a+(n-1)d} 3l-204-5m より 3l-68)=-5m 3と5は互いに素で l m は自然数であるから, m=3k(kは自然数)と表せる. 4≦bm≦200 より したがって, bm=-5×3k+205=205-15k 4205-15k≦200 1 3 -≤k≤- より, k=1, 2, 3, 5 13 67 数列{a} の第ℓ項と数列 {bm} の第項が等しいと する。 mは3の倍数 {cm} は, a1=4 以上, b= 200 以下である. 数列{cm} は, bm=205-15kにん 13, 12, 11, 1 を代入して得られる数列だから, {c}:10, 25, 40, ***, 190 よって, 初項 10, 公差 15, 項数 13の等差数列より, cn=10+(n-1)×15=15n-5 また、数列{cm} の総和は, の総和は1.13(10+190)=1300s.=.. S₁ = ½n (a + b) 2

解決済み 回答数: 1
数学 高校生

数Cの質問です! [ ]で囲まれているところの計算式を 分かりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

その 基本 例題 13 なす角からベクトルを求める B, ACOR (1) 正の数とし, ベクトル = (1,1) 2.29 基本事項 2 00000] (1) があるとする。い まことのなす角が60°のときの値を求めよ。 [(1) 立教大] (2)=(1,2)=(m,n)(mとnは正の数)について ||=√10 であり, 33 1章 とのなす角は135°である。 このとき,m, nの値を求めよ。 基本12 3 る。 CHART & SOLUTION なす角からベクトルを求める = (a1, a2), = (b1, bz)とする。 内積をat=a||| cose, at=ab+azb2の2通りで表す 内積を2通りの方法で表し, これらを等しいとおいた方程式を解けばよい。 (1) は (2) ではm, nが正の数であることに注意する。 ■ ) を解く 問 解答 0° 1x 60° 1 1x 求めよ と (1)=1×1+1x(-p)=1-p |a|=√12+1?=√2,16|=√12+(-b)=√1+12 ←成分による表現。 a = |a|||cos60°から 1-p=√2√1+x ① 定義による表現。 201 ①の両辺を2乗して整理すると よって p=2±√3 p2-4p+1=0 (1)=1/12(12) ここで,①より, 1p0 であるから 0<p< 1 ゆえに p=2-√√3 整理する 1+0 であるから, ①の右辺は正。 よって, ①の左辺も正であり, 1-p>0 (2)|5|=√10から ||=10 よって m²+n2=10 ...... ① ||=√12+(-2)²=√5 であるから a•6=|a||6|cos 135°=√/5 ×√10×(-1/2)=-5 COS また, a1=1xm+(-2)xn=m-2n であるから m-2n=-5 定義による表現。」 ベクトルの内積 ←成分による表現。 ゆえに m=2n-5..... ② ②①に代入すると (2n-5)2+n2=10 整理すると 5n2-20n+15=0 よって よって n2-4n+3=0 ゆえに n=1,3 ②からn=1のとき m=-3, n=3 のとき m=1 (n-1)(n-3)=0 m, n は正の数であるから PRACTICE 13° ←m=-3<0 から不適。 m=1, n=3 \)\)= 20 (1) OA = (x, 1), OB=(2,1) について, OA, OB のなす角が45°であるとき, xの 値を求めよ。 (2)=(2-1) = (m,n) について,16=2√5であり,ことのなす角は60°で ある。このとき,m, nの値を求めよ。

解決済み 回答数: 1