学年

教科

質問の種類

数学 高校生

0≦x<3を満たすものは(i)ではk=-1として、(ii)ではk=2としているのですが、どのようにしたらkの値を定められるのですか?

13問~ 第5問は,いずれか2問を選択し、 解答しなさい。 第4問 (選択問題) (配点20) みつよし じん 1627年(寛永4年) に吉田光由が著した「塵 劫記』 は, 身近な題材をもとに計量法や計算法 を解説した算術書であり, 寺子屋等で庶民にも 親しまれていた。 この中に 「油分け算」 と呼ば れる問題がある。 問題を現代風に書くと以下の ようになる。 問題 10Lの容器いっぱいの油を,7L の容器と3Lの容器を使って 5L ずつに 分けたい。 どのようにしたらよいか。 vallal TA a dest P corals 10-1 (出典: 京都府立京都学歴彩館 京の記憶アーカイブ) ここでは,最初油が10L入っている10Lの容器をP とし,7Lの容器を A, 3L の容器をBとする。 (1) 簡単のため, 別の 10Lの容器 Q があるとして,次の四つの操作を考えよう。 A :容器 P から容器 Q に, 容器 Aを用いて7Lの油を移す。 ⑧ : 容器 P から容器 Q に 容器 B を用いて3Lの油を移す。 A 容器Qから容器P に, 容器 A を用いて7Lの油を移す。 B : 容器 Q から容器P に, 容器B を用いて3L の油を移す。 操作とは逆の操作であるから,これらを組み合わせることは意味がないこ とに注意しよう。 操作 ⑤ とについても同様である。 数学Ⅰ・数学A 第4間は次ページに続く) (i) まず, 操作を回操作を回行うときを考える。 P (10L) A x=1x5+ A (7L) イ 2. B (3L) 操作を1回行った後、 操作を続けて Lの油が残る。 このとき, x=1. y= ア になっている。 この問題では, 不定方程式 7x-3y=5 の整数解 x,yを考えればよい。 この方程式のすべとし て ア Q(10) 行うと、容器Q には 1 は不定方程式x-3y=1の整数解 ym -〒×5+1 第1回 17 れる。 ① 整数x,yの中で, 0x<3を満たすものは I である。 したがって、操作を 行うことにより,P,QにそれぞれLずつのを分けることができる。 (数学Ⅰ 第4間は次ページに置く

回答募集中 回答数: 0
数学 高校生

“AD=”の【ニ】から解き方が分かりません💦 簡単な式だけでいいのでお願いします

〔2〕 幅20cmのトタン板を折り曲げて雨樋を作る。 大雨が降ってもできるだけ 雨樋から雨水が漏れることがないように、断面積が最大になるように作りたい。 (1) 図1は, トタン板を断面が三角形になるように折り曲げたときの断面図である。 断面の△ABCにおいて, 辺ABの長さをxcm, ∠ABC = 0,断面積を Scm とする。 このとき, Sはxと0を用いると 0 をとる。 ソ S = タチ と表すことができる。 xを固定して考えると、 Sは0= タチ のとき最大となる。 sin サ の解答群 B 図1 x2 + スセx のとき, Sは x= ツテで最大値 トナ 1 cos ソ (第3回3) ② tan 0 (数学Ⅰ・数学A 第1問は次ページに続く。) (2) 次に, トタン板の断面が図2のように, AD // BC, ∠BAD=∠CDA, AD > BC である台形 ABCD になるように折り曲げたときを考える。 x= AD= ヌ 台形 ABCD において、 改めて辺ABの長さをxcm, ∠BAD=0 とする。 このとき, ADの長さはxと0を用いると ノハ ヒ x の解答群 ⑩ sin 0 B = x. と表すことができる。 断面の台形 ABCDの面積を Scm² とすると, ∠BAD = 60° のとき, Sは ヌ 20-24 図2 で最大値をとる。 C +20- ネ cos 台形 ABCD が内接する円の半径は x フへ (3) (2) 台形 ABCD は円に内接している。 ∠BAD=60°, x= ホ (2 tan 0 (第3回 4 ) cm である。 ヒ のとき

回答募集中 回答数: 0
数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

72.1 原点Oについての文章は必要ですか? また必要ならなぜ必要なのでしょうか?

35) で AB 座標を利用した証明 (1) 基本例題 72 (1) △ABCの重心をG とする。 このとき, 等式い AB2+BC + CA=3(GA²+GB2 + GC2) が成り立つことを証明せよ。 (2) △ABC において, 辺BC を 1:2に内分する点をDとする。 このとき, 等式 2AB2+ AC2=3AD2 +6BD” が成り立つことを証明せよ。 指針 座標を利用すると, 図形の性質が簡単に証明できる場合がある。そのとき 座標軸をどこにとるか、 与えられた図形を座標を用いてどう表すか がポイントになる。そこで後の計算がらくになるようにするため、問題の点がなるべく 多く座標軸上にくるように 0 が多いようにとる。 (1) は A(34,36),B(-c, 0), C(c, 0) とすると,重心の性質からG(a,b) (2) は A(a,b),B(-c, 0), C(2c, 0) GAA CHART 座標の工夫 11 0 を多く ② 対称に点をとる 解答 (1) 直線BC をx軸に, 辺BCの垂直二等分線をy軸にとると, 線分BCの中点は原点0になる。 A (3α, 36), B(-c, 0), C(c, 0) とすると, Gは重心であるからG(α, b) と表される。 よって AB' + BC2 + CA2 =(-c-3a)2 +962+4c²+(3a-c)'+962 =3(6a²+6b²+2c²) GA2+ GB2+ GC2 = (3a-a)²+(3b-b)²+(-c-a)²+b²+(c-a)² +6² =6a²+662+2c2 ①②から AB2+BC2+CA²=3(GA²+GB2+GC 2 ) (2) 直線BC をx軸に点Dを通り直線BCに垂直な直線を y軸にとると、点Dは原点になり, A (a,b), B(-c, 0), C(2c, 0) と表すことができる。 (x+ よって 2AB' + AC2=2{(-c-a)+(-6)^}+(2c-a)+(-6) 2 =2(c²+2ca+a²+6²)+4c²-4ca+a²+ b² =3a²+36²+6c² 3AD²+6BD²=3(a²+b²)+6c² ①②から ① 2AB2+AC2=3AD2 +6BD2 基本71 基本85 B (-c,0) 0 34 A(3a,3b) (G (a,b) BA (-c, 0) OD (C,0) x A(a, b) 2 C (2c, 0) * SE,99 とする。 このとき, 等式 117 ET 3章 2直線上の点、平面上の点

回答募集中 回答数: 0