学年

教科

質問の種類

数学 高校生

青チャ数Bの問題です 右の写真の私の83(1)の解答について、どこからが間違っていますか?やはり最後に90°-θをしなければならないのですか?しかし私には90°-θをする理由がわかりません。 加えて解答の書き方に不備がありましたら、そちらもご教示ください 字が汚くすみ... 続きを読む

演習 例題 83 直線と平面のなす角, 直線に垂直な平面 x-2_y+1 (1) 直線l: = 4 -1 =z-3と平面α:x-4y+z=0 のなす角を求めよ。 (2)点A(1,1,0)を通り,直線x6=y-2=- 1-z に垂直な平面の方程式を 2 求めよ。 た 演習 78,80 指針▷(1)直線lと平面αのなす角は,lのα上への正射影(*)を l' とすると, 右の図のようにll のなす角 0 である。 したがって, 平面αの法線ベクトルを直線lの方向ベ クトルをdとdのなす角を とすると, 0=90°-01 または 0=01-90°である。 ! (2)直線に垂直な平面 → 直線の方向ベクトルが平面の法線 ベクトルである。 解答 (1) 直線lの方向ベクトルをd=(4,1,1) とし, 平面 α の法線ベクトルを=14,1)とする。 dとんのなす角を10° 180°) とすると d.n COS G1= dn = 4・1+(-1)・(-4)+1・1 √4°+(-1)+12√1°+(−4)'+12 1 = 20 0° 180°であるから =60° よって、直線lと平面αのなす角は 90°-60°=30° (2) 館 6 21 日 a (*) 直線l上の各点から平 面αに下ろした垂線の足 の集合を,直線lのα 上へ の正射影という。 A 4+4+1_9_1 √18 18 18 2 h z-C

回答募集中 回答数: 0
数学 高校生

(2)の問題ではどうして線で引いたところをしめすと最終的にxとy、最小値がでているのか理解できません。どうしてなのか教えてください。

66 第3章 2次関数 基礎問 ● 38 最大 最小 (IV) x, yがすべての実数値をとるとき, z=x2-2.xy+2y2+2.4g+3 について,次の問いに答えよ. (1)yを定数と考えて, xを動かしたときの最小値mをyで表せ (2)(1)のmにおいて,yを動かしたときの最小値を考えることで、 精講 zの最小値とそのときのx,yの値を求めよ. 変数が2つ(xとy)ありますが,37のように文字を減らすこと できません.このような場合でも,変数が独立に動くならば、 の文字を定数と考えることによって, 最大値や最小値を求められます。 解答 (1) z=x2-2(y-1)x+2y2-4y+3 ={x-(y-1)}2-(y-1)2+2y2-4y+3 ={x-(y-1)}2+y^-2y+2 よって,m=y2-2y+2 ●式をxについて整理 ●平方完成 Rayをab.cと同じにする 39 最 △ABO 上にAI 垂線 DE (1) 長方 (2) Sの 長 精講 V (1) AI .. ま ま (2)m=y-2y+2=(y-1)+1 .z={x_(y-1)}2+(y-1)2+1 {x-y-1)}2≧0, (y-1)2 ≧0 だから -(y-1)=0 かつ, y = 1, すなわち A,Bが実数のとき A2+B2≧0 等号は A=B=0 (2) DE S= x = 0, y=1のとき, 最小値1をとる. のとき成りたつ ポイ ② ポイント 2変数の関数の最大・最小を求めるとき,それらが 立に動くならば、片方を定数と考えてよい ※定数・一定の数y=ax+bx+cにおけるa,b,c 演習問題 38 x, y がすべての実数値をとるとき, 32+2xy+y+4x-Aut 演習問題 39

未解決 回答数: 1
数学 高校生

3番の答えの矢印のとこがわかりません

基礎向 第3章 2火 26 1次関数のグラフ (2)(i) (0)=|01|+2=|-1|+2=3 (2)=|2-1|+2=1+2=3 f(4)=|4-1|+2=3+2=5 (i) 0≤x≤35, -1x-12 よって, z-12. 2≦x-1+2≦4 O≦x<1のとき ところを考え 1≦|x-1|≦2 (1)次の方程式のグラフをかけ. (i)g=1 (i)x=2() y=-x+2) (iv)g=2x-1 (2) 関数f(x)=-1+2について、次の問いに答えよ。 (i) f(0),(2)(4) の値を求めよ. (定義域が0k3のとき, 値域を求めよ. (1) 座標平面上の直線は、次の2つのどちらかの形で表せます。 ①y=mx+n ② x=k ①は傾きで点(0,n) を通る直線を表します。 ②は点(k, 0) を通り, y 軸に平行な直線を表します. ②は傾きをもたない 2) y=f(x)において,のとりうる値の範囲を定義域, その定義域に対応し て決まるf(x) (すなわち,y) のとりうる値の範囲を値域といいます。 (1)(i) 94 解答 (ii) y |x=2 よって, 値域は, 2≦f(x)≦4 注 (答) 定義域の両端の f(0)=3,f(3)=4だから, 値域は 3≦f(x)≦4 値を求めても値 とは限らない 11で学んだ絶対値記号の性質を利用して, y=f(x) のグラフをかいて, 値域を求めてみましょう x-1 (x≧1) |x-1|= だから, -(x-1) (x<1) 0≦x≦の範囲において、 f(x)={\ +1 (1≤x≤3) 1-1+3 (053≤1) よって, f(x)=x-1|+2 のグラフは右図のよう になるので,求める値域は 2≤ f(x)≤4 Y 0 2 y=1 xC 0 2 18 (iv) y /y=2x1 1 ポイント 関数の値域は、定義域の両端のyの値を調 は不十分. グラフをかいて求める 演習問題 26 その問いに笑

未解決 回答数: 1
数学 高校生

(3)を解いてみましたが、答えが違いました。どこで間違えたのでしょうか。 また、(-2/3)^(n-1)の場合、マイナスは偶数乗か奇数乗かが固定されていないと、括弧の外に出せないという考え方であっていますか?

10 和と一般項の関係, 3 項間漸化式 - 数列{an}が, a=-1,22ar=3an+1-24-1 (n=1, 2, 3, ...)を満たすとき, (1) az を求めよ. (2) 3an+2-70n+1+20m=0を示せ. (3) am を求めよ. an=S-S1 (山形大工/一部省略) S” を含む漸化式は, 「an=S-S-1 (n≧2)」......☆を用いて, S を消去し,4 だけの漸化式に直す. ☆は一般にはn≧2のときのみに通用することに注意 (n=1 とするとn-1=0 になってしまう!). n=1のときは, α = S」 を用いる。 an+2+pan+1+gan=0 an+2+pan+1+ga=0の一般項を求めるには,r' + pr+g=0の解α,βを 用いる. 解と係数の関係より, か=-(a+β), q=aB. よって, an+2-(a+β)an+1+αBa=0. これを an+2-αan+1=B(an+1-αan), an+2-Ban+1=α (an+1-Ba) と変形する. α=βのときは,an+2-αan+1=α (an+1-αan)より, an+1-4a=an-1 (a2-aa)として, an+1=αan+san-1 (s=az-aa1). これをα+1で割り, bn=alα" とおくと {bm} は等差数列になる. 解答 Sn=ax とおくと,2S=3an+1-24-1 (1) ① n=1 とすると, 2S1=3a2-241-1 S=q=-1だから, -2=3a2+2-1 ∴. a2=-1 (2) ①のnをn +1 にすると, 2Sn+1=3an+2-2an+1-1 ②-①より, 20+1=34n+2-34n+1-2an+1 +2an :.34n+2-7an+1+2an=0 (3) (2)より, an+2 7 2 13an+1+1/30m=0 [右の傍注に注意し] ③を変形して 1 an+2-24n+1=1/22 (an+1-2an) ④, an+2 (ant1-20),ant2-1/30nt1-2 (0mts-1230円) \1 1\n-1 an+1- ←S+1-Sn=an+1 7 ③ rr+ x+2=0の解 --- 3 (2) (11/23)により ....5 1 x=2. 3 ⑥④より{an+1-2cm} は公比 1/3 の 等比数列. 2-1 ...... 7 a-(—)" (az−2a1) = ( )" (−1+2)=(3)- =(1/1) 3 ④より, an+1-2an= ⑤より, an+1一 an=2n-1 a2 12-130-20-(02/24)-20-1(-1+1/3)-(-/3/3) 2 =2" よって, 3 n-1 ・2"-1- 10 演習題 (解答は p.76) 2Sn2 数列{a} は,q=1, an= (n=2, 3, 4, ...) を満たす. 2Sn+1 ただし, Sn=a+az+... +an である. (1)a2 を求めよ. (2) SS-1 を用いて表せ. (3) S (2) 前文に反しか らを消去する. C (芝浦工大) (3) 11を参照。

回答募集中 回答数: 0
数学 高校生

Pの範囲を求める時に1文字消去してやっても良いでしょうか? x=p-y (p-y)^2+(p-y)y+y^2=1 y^2-py+p^2-1=0 この判別式DがD≧0より D=p^2-4p^2+4≧0 よって... 同じ範囲は出るのですが、これで良いでしょうか?... 続きを読む

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0
数学 高校生

Pの範囲を求める時に1文字消去してやると間違うのですが、何故なのでしょうか。 x=p-y (p-y)^2+(p-y)y+y^2=1 この判別式DがD≧0より -2≦p≦2

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0
数学 高校生

Pの範囲を求める時に2枚目の写真のように1文字消去してやると間違うのですが、何故なのでしょうか。

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0