学年

教科

質問の種類

数学 高校生

⑵で、三角形の重心を通り、かつ、辺BCを1:3に内分する点を通る直線と考えて求めたのですが、2枚目のようになって、答えが合いません。 この考え方は間違っているのでしょうか。

の値に関係なく の恒等式 する。 3x+y-3=0 の交 等式と考える 係数比較法。 kA+B=0が ての恒等式 ⇒ A=0, B=1 についての解答 る。 候補を求め、そ なお、代入する 重要 例題 83 直線と面積の等分 3点A(6,13),B(1,2), 9, 10) を頂点とする △ABCについて) A8 (1) (1) 点Aを通り, △ABCの面積を2等分する直線の方程式を求めよ。 (2)辺BC を 1:3に内分する点Pを通り, △ABCの面積を2等分する直線の 方程式を求めよ。 Ⅰ······基本 75,78 「に対して 三角形の面積比 等高なら底辺の比であるから, 求める直線は, 辺BC を同じ比に分ける点, すなわち辺BCの中点を通る。 (2) 求める直線は, 点P BCの中点より左にあるから, 辺AC と交わる。 この交点をQ とすると, 等角→ 挟む辺の積の比(数学A : 図形の性質) により ACPQ CP·CQ 1 △ABC CB・CA 2 これから, 点Q の位置がわかる。 指針 (1) (1) 求める直線は、辺BCの中点 を通る。 この中点をMとする と, その座標は /1+9 2+10 2' 2 すなわち (5, 6) よって, 求める直線の方程式は 6-13 (x-6) y-13= 5-6 y=7x-29 YA 3・1+1.9 1+3 = " A(6, 13) P B(1, 2) O したがって (2) 点Pの座標は すなわち (3,4) 辺AC上に点Qをとると, 直線PQ が △ABCの面積を 2等分するための条件は ACPQ CP·CQ 3CQ_1 △ABC CB・CA 4CA 2 3・2+1・10 1+3 3 M Q C(9, 10) y-4= 12-4 (x-3) すなわちy=2x-2 7-3 B P 8 AAS (1) △ABM と△ACMの高 さは等しい。 M 異なる2点 (x1, y's), (x2, y2) を通る直線の方 程式は y-y₁=32-y₁ = Y/2/²(x-x₁) 4AABC= -12CA・CB sinC. △CPQ=1/2CP・CQsinc ゆえに CQ:CA=2:3 標は よって, 点Qは辺 CAを2:1に内分するから, その座 1.9+2.6 1.10+2.13 2+1 すなわち (7, 12) 2+1 したがって, 2点P, Q を通る直線の方程式を求めると また BC:PC=4:3 から ACPQ CP:CQ △ABC CB・CA 練習 3点A(20,24), B(-4,-3), C (10, 4) を頂点とする △ABCについて、辺BC を ③ 83 2:5に内分する点Pを通り, △ABCの面積を2等分する直線の方程式を求めよ。 p.140 EX 56 135 3章 直線の方程式、2直線の関係

解決済み 回答数: 1
数学 高校生

数Aの仮説検定の説明なのですが、何を言っているかが全く理解できなかったため、解説をお願いしたいです。 よろしくお願いします。

154205 A x ③ 仮説検定 ・仮説検定の考え方 サッカーの試合の勝敗予想がよく当たるという猫に, あるトーナメント戦の勝敗を予想さ せたところ,30試合中21試合が的中した。 この結果から,この猫の予想は本当によく当た ると判断してよいだろうか。 ORI+ATE+2s OT 201 + 0) 仮に,この猫の予想がでたらめであった(勝敗をそれぞれ1/2の確率で予想した)とすると, coraraa 21 試合以上で的中する確率は約2.1%である。 (確率は6章「場合の数と確率」で学ぶ。) 起こる確率が5%未満である事象を,ほとんど起こり得ない事象と考えるとすると,「でた JOU らめで予想している」という仮説のもとではほとんど起こり得ない事象と考え、仮説を否定 して「この猫の予想はよく当たる」 と判断することができる。 一方、この猫の予想が30 試合中 19 試合で的中した場合を考えてみよう。 でたらめで予想して, 19試合以上で的中する確率は約 10.0%であり、 「この猫の予想はよ く当たる」 と判断できるだけの根拠が得られないため, 「でたらめで予想している」 という 20 仮説を否定できない。 ただし, これは、でたらめかそうでないかについて判断できないこと を意味し, 「この猫の予想はよく当たるとはいえない」と結論づけることはできない。 317

未解決 回答数: 0
数学 高校生

証明の2段目にx=0,1,-1,2で等式が成り立つと書いていますが、これは証明するためにこの4つの値で考えているという解釈で合っていますか??

自係数比較法 検討 係数比較法は, 恒等式の性質 (p.35 基本事項 2① : 各項の係数はすべて0) が根拠となる これをPがxの3次式の場合, ax+bx+cx+d=0 ・・・・・・ A について証明してみよう。 [証明] ax3+bx2+cx+d=0 A がxについての恒等式とする。 ...... x=0,1,-1,2で等式が成り立つから x=0 のとき d=0 ① x=1 のとき a+b+c+d=0 x=-1 のとき -a+b-c+d=0 x=2 のとき 8a+46+2c+d=0 ①から a+b+c=0 -a+b=c=0 8a+46+2c=0 ...... ...... 000 ② +③ から 26=0 ゆえに 6=0 このとき, ②, ④ から a+c=0, 8a+2c=0 これを解いて a=c=0 よって a=b=c=d=0 B 逆に,Bが成り立てば明らかに A は 3 0.x3+0.x2+0.x +0=0となり,これは 4 xについての恒等式である。 ...... すなわち ax+bx+cx+d = 0 がxについての恒等式⇔a=b=c=d=0 ax+bx+cx+d=a'x+b'x' + c'x+d' がxについての恒等式 ⇔(a-a′)x3+(b-b')x2+(c-c)x+(d-d')=0 がxについての恒等式 よって, その各項の係数はすべて 0 であるから a=a', b=b', c=c', d=d' なお, 上の証明では,次のように、 2つの部分を示していることに注意する。 Aが恒等式 x=0, 1, -1,2で成立α=b=c=d=0 (必要条件) a=b=c=d=0 A が恒等式 ( 十分条件)

回答募集中 回答数: 0
数学 高校生

71.1 これでも大丈夫ですよね??

116 基本例題 71 三角形の形状 (1)3点A(1,3),B(5,6), C(-2, 7) を頂点とする △ABCは直角二等辺三 形であることを示せ。 (2)3点A(4,0),B(0,2),C(a,b)について, △ABCが正三角形であると。 a,bの値を求めよ。 基本70 指針 本間のようなタイプの問題では,辺の長さ(または辺の長さの2乗)を計算した後に ② 三平方の定理を満たすかどうか ①等しい辺はどれか の2点に注目するとよい。 98=194 (1) AB', BC2, AC2 をそれぞれ求め, 三平方の定理を満たすことを示す。 (2) △ABCが正三角形であるための条件は、 AB=BC=CA この条件をAB=BC=CA" として扱い, α, bの連立方程式を導く。 CHART 三角形の形状 等しい辺三平方の定理を(辺の長さ)で判断 解答 (1) AB²=(5-1)²+(6-3) ²=25 よって AC²=(-2-1)+(7-3)=25 BC²=(-2-5)²+(7-6)²=50 AB=AC, AB'+AC'=BC2- したがって, △ABCは∠A=90°の 直角二等辺三角形である。 ! AB'=CAから 整理して !!] BC2=CA”から 整理して (2) AABCが正三角形であるための条件は0円 AB=BC=CA すなわち AB=BC2=CA2 ゆえに ② から よって 練習 71 ②①に代入して 整理して a²-4a+1=0 C(-2,7) b=2a-3 5√2 B(5,6) A(1,3) (0-4)²+(2-0)²-(4-a)²+(0-b)² (a-4)² +62=20..... ① (a-0)²+(b-2)²=(4-a)²+(0-b)² ...... 2 (a-4)²+(2a-3)²=20 a=-(-2)±√(-2)^-1・1=2±√3 _2) B(12). C(a,b) ! 単に「直角三角形」だけで は不十分。 どの角が直 も明記する。 (2) C(a,b) SB(0,2) A(4,0) 基本 (1) △ AB2 b=2(2±√3)-3=1±2√3 (複号同順)を創 (a, b)=(2+√3, 1+2√3), (2-√√3, 1-2√3) 6008 正三角形 ABCは、直線AB の両側に1つずつできる。 解答 2点A(x1, y), Bx1 (1) 直 に対し 線分 AB2=(x^2-x1)^2+(- C(c, (1) 3点A(4,5), B(1, 1), C (5, -2) を頂点とする △ABCは直角二等辺三角 形であることを示せ。 (2) A 2AF 指針 7 3 ( 【CHA y C(a よ. 2 ①

解決済み 回答数: 1
数学 高校生

数B 標本の問題です。写真の問題で、私はこれを(n,0.4)の二項分布に従うと考え、⑴の平均もn×0.4=0.4nだと思ったのですがこれは何が間違っているのでしょうか。 また二項分布の平均、分散の公式はいつ使えるのでしょうか。明日がテストなので焦っています💦お答えいただける... 続きを読む

考え方 母集団から無作為に標本 X, X2,..,X, を抽出すると, 独立な確率変数X,X= X" のそれぞれの平均 E (X) と標準偏差 (X)は,母集団と一致する. **** 例題 B2.12 標本平均の平均・標準偏差 H ある都市での有権者のA政党支持率は40% である. この有権者の中か 1400 ら無作為にn人を抽出するとき、k番目の人がA政党支持者なら1を不 支持者なら0の値を対応させる確率変数をXとし, 標本平均をXとする。 (1) X の平均を求めよ. を否定するだけの根拠が得られなかった (2) X の標準偏差 (X) が0.04 以下となるためのnの最小値を求めよ. 解答(1) 母集団の確率分布は, A 政党支持なら1, 不 支持なら0でA政党支持率は40% より,右 のようになる. To. in X の平均は,E(X)=E (1 (Xi+X2+..+X) n よって,母平均は,m=1×0.4+0×0.6 = 0.4 より,E(X)=m=0.4 cus よって, E(X)= n (2) 母集団の標準偏差oは, 検定を行う=√(1²×0.4+0°×0.6) -m²=√0.4-0.4°=√0.24 家であり、標本平均 X の標準偏差は, 1 =- 008 Vn² √0.24 0.04 1 {E(X₁) + E(X₂) + ······+E(X₂)} n (X)=√(X) = V ( ²1 - (X₁ + X₂ + ... + X₂₁) $$__@@ _@_____ = √ √ 2 / (V(X) 2/2 (V(X) + V (X₂) +----+ V (X») } + V( N (m+m++m)=m=0.4 = = √ √ 12/23 (0² + 0 ² + したがって,(X)=1 確率変数 確率 √0.24 ... + 0 ² ) = "+") -√²-0 to n より 0.24 0.0016 √0.24 より nz 4=150 10 計 0.4 0.6 1 E(aX+bY) =aE(X) + bE (Y) E(X₁)=E(X₂)=··· ......=E(X)=m o=√E(X^)-{E(X) X1, X2, ....., Xn は 独立とみなしてよい. X, Yが独立のとき V (aX+bY) = aV (X) +6°V (Y) - ≧0.04 であるから、 TUISS よって, n の最小値は150

回答募集中 回答数: 0