学年

教科

質問の種類

数学 高校生

赤く丸をしたbの問題で解答の方に二階微分した後の式がなぜ(-1/4)(-1/4)(H-27)になるのか分かりません。教えてください🙇‍♀️

QA At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation dH (H- (H-27), where H(t) is dt measured in degrees Celsius and H(0) = 91. (a) Write an equation for the line tangent to the graph of Hat t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3. (b) Use 2017 APⓇ CALCULUS AB FREE-RESPONSE QUESTIONS (a) dH d²H dt² to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3. (c) For t < 10, an alternate model for the internal temperature of the potato at time 7 minutes is the function -= − (G - 27)²/3, where G(t) is measured in degrees Celsius dG G that satisfies the differential equation dt and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3 ? 564 at (21-27) - == 2-16 To = - = (H(3)-27) 4 -64 = HB)-27 -37 = H (3) (b) _d²fi © 2017 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT P

回答募集中 回答数: 0
数学 高校生

詳しく解説お願いします。 よろしくお願いします。

26 例題 7 二項係数の性質 (1 + x)” の展開式を利用して,次の等式を証明せよ。 (1) nCo+nC₁+nC₂+ • • •+nCn−1+nCn = 2" (2) nCo-nC1+nC2-‥‥+(-1)^-1nCn−1+(-1)*nCn=0x 思考プロセス すなわち 逆向きに考える (1), (②2)の式は,①のxにそれぞれ何を代入したものか? RICO $+B) <<noin (1+x)" = "Co•1"+ "C1"-1.x + "C2・1月-2x2+ ... +nCn-1・1・x"-1+nCm・x" ... »Co+nC1x+nC2x² + ··· +nCn-1x"−¹+nCnx” = (1+x)ª) ¨¨· D · Telpla Action>> 二項係数の和は、(1+x)” の展開式を利用せよ 二項定理により 解 二項定理を用いて, (1+x)" を展開すると (1+x)" = nCo+nCix+nCzx2+ SUNG (1) ① に x=1 を代入すると ..+nCn-1xn-1+nCnxn (1+1)" = nCo+nC1・1+nC2・1+ よって (2) ① にx= -1 を代入すると 練習 7 1513 (1−1)″ = nCo+nC₁(−1)+nC₂(−1)² + ... [ nCo+nC1+nC2+..+nCn-1+nCn = 2n @ $6€ + $$• ・+nCn-1・17-1+nCn1n nCo Point.... 二項係数の性質 (a+b)" の展開式の係数に現れる "Cy を二項係数という。 二項係数には,次のような性質がある。 よって n Co-nC1+nC2-‥..+(-1)^-1nCn-1+(-1)"nCn=0 ..+nCn-1(-1)n−1+nCn(-1)" (1) nCr = nCn-r (2) +1Cr+1=nCr+nCr+1 (3) nCo+nC₁+nC₂+ • • •+nCn−1+nCn = 2² (4) nConC₁+nC₂ — • • • + (−1)n-¹ nCn-1 + (−1)" nCn = 0 (5) C1+2C2+3mCs+..+(n-1)C1+nnCn=n2"-1 (80) = ( *(1-PSIT INSIT ) (1+x) の展開式の一般 項は Crx" である。 ① はどのようなxの値に ついても成り立つ。 5d² Jei TEATRE C (1+1)" = 2" ISITIS rが偶数のとき (-1)' = 1 rが奇数のとき (-1)'=-1 J (1) 18-01S (1+x)" の展開式を利用して,次の等式を証明せよ。 (1) C-2C1+2°C2-...+(-2)-1,C-1+(-2)"C=(−1)" (2) nCinC2 "C₁ + ² + (−1)n-1 ~Ce-1 + (−1) nCr 2 22 nCn−1 on-1² (>7 (1)) 例題7 (2) (問題7 (2)) PR (S) 1

回答募集中 回答数: 0
数学 高校生

まるで括ってあるところの解説お願いします。

とき 14に、 * ) 場合分けの 式の解の共 る。 -1 20 0 1 2 通範囲 合わせた ついてはp.59 xの値の範 重要 例題 100 文字係数の2次不等式の解 TOI 次のxについての不等式を解け。ただし, aは定数とする。 5x²(a²+a)x+a³ ≤0 基本 30, 85,86 =2x から x-2)=0 から SOLUTION 係数に文字を含む2次不等式 場合分けに注意 HART& 解答 不等式から したがって [1] a <α² のとき a(a−1)>0 a²-a>0 5 よって a<0, 1<a このとき, ①の解は a≤x≤a² 左辺は,たすき掛けにより因数分解できて (x-a)(x-a²)≦0 α<βのとき (x-a)(x-β)≦0amxp ここでは α,βがともにaの式で表されるから, a と との大小関係で場合が分 かれる。 ......。 x²(a²+a)x+a³ ≤0 (x-a)(x-a²) ≤0 (1) [2] a=a のとき a²a = 0 から よって α=0 のとき α=1のとき f(x)>g(x) =f(x)のグラ] [3] a>α² のとき のグラフより a²-a< 0 から よって このとき, ① の解は a² ≤x≤a 以上から a(a-1)=0 a=0, 1 ① は x≧0 となり x=0 ① は (x-1)'≤0 となり a(a-1)<0 0<a<1 0<a<1のとき a=0 のとき a=1のとき a < 0, 1 <a のとき a≦x≦a²) a²≤x≤a) PRACTICE・・・ 100 ③ x=0 x=1 x=1 重要 102 3/29 ◆ たすき掛け 1 1 -a → - a -a²-a² a³ con AJ ity Wear On - (a² + a) 0≦x≦0 は x = 0, 1≦x≦1 は x=1 を表すから, 解は 0≦a≦1のとき a² ≤x≤a a < 0, 1 <a のとき a≤x≤a² と書いてもよい。 153 αの値を①に代入。 (x-α)2 0 を満たす解 はx=α のみ。 3章 11 2次不等式

回答募集中 回答数: 0