学年

教科

質問の種類

数学 高校生

数学 答えと違うやり方でやった(二枚目)のですが、良いのでしょうか?k=1のときを考えてないからダメだと思いますが。。

要 例題 43 虚数を係数とする 2次方程式 00000] xの方程式(1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように,実数k の値を定めよ。 また, その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 (x-6)=(+x)([+x) (£) ひとすると 基本 38 73 判別式は係数が実数のときに限る DOから求めようとするのは完全な誤り(下の INFORMATION 参照)。(ど)。 実数解をαとすると (1+i)μ2+(k+i)a+3+3ki=0 RBORONE ns-e+x(S-D) (1) 2章 6 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により (1) a=0, 6=0 α, kの連立方程式が得られる。 る。 .... 解答 NEDOZEURS-50-DE) to (S) 方程式の実数解をα とすると 整理して (1+i)a2+(k+i)a+3+3ki=0 (a2+ka+3)+(α2+α+3k)i=0 x=α を代入する。 a+bi=0 の形に整理。 α kは実数であるから, a2+ka+3, a2+α+3k も実数。この断り書きは重要。 よって ①② から ゆえに よって Q2+ka+3=0 _Q2+α+3k=0 ...... 2 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 複素数の相等。 ← α を消去。 infk を消去すると k=1 または α=30= (L-n) + α-22-9=0 が得られ, [1] k=1のとき ① ② はともに α2+α+3=0 となる。 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 これを満たす実数 αは存在しないから、不適 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 RS ←D=12-4・1・3=-11<0 ①:32+3k+3 = 0 ②:32+3+3k=0 [1] [2] から求めるkの値はk=-46 実数解は x=3 2次方程式の解と判別式 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a, b c が実数のときに限る。 例えば, α=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix'+x=0の解 はx=0, i であり、 異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 43° 0-6040-0 の方程式 (1+i)x²+(k-i)x-(k-1+2)=0 実数解をもつ #th to a litt

未解決 回答数: 0
数学 高校生

「」の部分がわかりません。どなたか教えてください!

000 求めよ。 重要70 重要 例題 102 連立不等式が整数解をもつ条件 xについての不等式 x 2-(a+1)x+a < 0,3x²+2x-1>0 を同時に満たす 整数xがちょうど3つ存在するような定数αの値の範囲を求めよ。 [摂南大 ] 00000 155 FE 基本 31.91 重要 100 CHART • SOLUTION 連立不等式 数直線を利用 不等式の左辺は,両者とも因数分解できる。 甲 分けて解を求める。 前者では文字αを係数に含むから,重要例題 100 と同様, αの値によって場合を F 解の共通範囲に含まれる整数値の考察には数直線の利用が有効である。・・・・ 解答 3章 一残る文字 る yの条件 x2-(a+1)x+a<0 から (x-a)(x-1)<0 <-1 -a→-a 11 よって 1 a -(a+1) a <1 のとき α <x<1 a=1のとき (x-1)2<0 から 解なし (x-1)2は常に 0 以上 Ex≦1)にお 2次不等式 1 <α のとき 1 <x<a 3x2+2x-1>0 から (x+1)(3x-1)>00 O よって x<-1, <a 1 <x 2 3 3 2 3-2 23 ① 1/1 <x<1には整数は含 3 まれない。 x 3 ①②を同時に満たす整数xがちょうど3つ存在するのは a <1 または α > 1 のときである。 [1] a <1 のとき 右の図から,a<x<-1 の範囲 の整数が-2-3, -4であれ ばよい。 -5≤a<-4 a -4-3-2-101 +5 ◆α=-5 のとき,① は -5<x<1 となり x=-5 が含まれず条件 を満たす。 α=-4 のとき, ① は -4<x<1 となり x=-4 が含まれず条件 を満たさない。 (p.55 ズーム UP 参照。) 16 よって [2] α>1のとき されてい よって ① 右の図から、1<x<αの範囲の 整数が 2 3 4 であればよい。 4<a≦5 -2- (1) ・最小値 以上から -5≦a<-44 <a≦5 -1 0 1 2 3 4 13 直は示し う。 PRACTICE・・・ 102 ④ (1)不等式 2x2-3x-5>0 を解け。 (2)(1)の不等式を満たし、同時に,不等式 x2+(a-3)x-2a+2<0 を満たすxの整 数値がただ1つであるように、定数αの条件を定めよ。 [[成城大]

未解決 回答数: 1
数学 高校生

数2 三角関数です。 (3)が何をやっているのか全くわかりません。 そもそもtanが傾きという事しか理解できていません。 丁寧に教えて下さると助かります。 よろしくお願いします。

SB< 2 のとき,次の不等式を満たす 0 の範囲を求めよ。 sine (2) 2cos+1 ≧ 0 (3) tan-1 Action sino, cos0 を含む不等式は、 単位円上の座標の大小で考えよ 例題133 Action tan を含む不等式は,直線x=1上の座標の大小を考えよ IA例題134 図で考える 端点が含まれるかどうかに注意する。 不等式 sin0 >k kl Dia (2)不等式 cosk y (3) 不等式 tan0≦k /1x Ok1x k Br O Da (1)02において, sind = π 3 を満たす 0 = ' 4 4 π √2 よって、不等式を満たす 0 の動径は 右の図の斜線部分にあるから P' 34_1 W2 P x y = sind のグラフが直線 y= √2 より上にある部 分を考えてもよい。 y y=sin0 π 1|21|2 145 (2) 2cos +120 cos 002πにおいて, cose 2 4 を満たす日は 0 = π, πT 3 3 例題 145 よって, 不等式を満たす 0 の動径は 右の図の斜線部分にあるから 2 4 0≤0≤ ≤0<2π (3)002において, tand= -1 3 7 を満たす 0 0 = 4π ・π、 ・π 4 よって, 不等式を満たす 0 の動径は 右の図の斜線部分にあるから π 3 3 7 <0≤ π、 0 π 2 4 P 34 P 0π 3 4 4" 3 3章 三角関数 y=cos とy=- =-1/2 のグラフで考えてもよい。 y y=cose 0 2π x y=- y = tan と y = -1 のグラフで考えてもよい。 y=tan0 VIZE 0 2π 2 3 T では定義され 2' 2 ないことに注意する。 1460≦2のとき、次の不等式を満たすの範囲を求めよ。 (1) sin≦ √3 (2)√√2 cos+1 < 0 (3) 2 /3tan0 + 1 0 p.271 問題146 267

未解決 回答数: 1
数学 高校生

vision questⅡ English expression hope70ページ preview 1.date&time 2.numbers(sizes,measurements,etc) 3.prices&Phone numbers listening task 1.... 続きを読む

140 // TIT Activity for Communication 3 Preview Listen to the sentences below. 1 Dates & Times Listening for Numbers the on Enio 1. "The movie starts at 5:20. Can you be ready in ten minutes?" "OK. I'll try." 2. "What time is it now?" "It's 11:30." basalaila awohlsw 3. I have an appointment with the dentist this Thursday, the 10th. M 4. "When does school begin?" "It begins on April 8th." 5. Our school was established in 1965. 6. My family has lived in this town since 2005. 2 Numbers (sizes, measurements, etc.) 1. Two thirds of the students come to school by bus. 2. One mile is about 1,609 meters. 3. The city has a population of about 2.5 million. 4. The temperature dropped to 12°C. 5. APA Air Flight 125 for London will be departing from Gate 14 at 10:15. 3 Prices & Phone numbers 1. The price of this bag is $27.89, but you can have it at 10 percent off. 2. What would you do if you won 100 million yen in a lottery? 3. "A hamburger and a cola, please." "That'll be £2.99." 4. I need €20, but I'm €5 short. 5. My phone number is 612-750-5613. Listening Task Listen to the conversations and choose the correct answers. 1. How much of the earth's surface is covered by ocean? 1 more than one third more than one fourth 監督署 ER 70 3 more than two thirds 4 more than two fifths 2. When were the Olympic Games held in Atlanta? 1 in 1966 2 in 1969 3. How much did the dress cost? 1,100 yen 2 1,800 yen 3 in 1996 4 in 1999 S 8,000 yen ③ 13,000 48,800 yen bluros ④ 30,000 about 200,000 4. How many people can the concert hall hold? ① 1,300 ② 3,000 5. How many people live in the city? ①about 2,000 2 about 12,000 3 about 20,000 ① 207-7300 2207-7003 ③ 702-3300 6. What's the phone number of the restaurant? The number is 510- ④ 702-3003

回答募集中 回答数: 0
数学 高校生

マーカーの部分を教えてください

08 基本 例題 65 最大・最小の文章題 (2) 0000 座標平面上で、点Pは原点Oを出発して、x軸上を毎秒1の速さで点(6 まで進み、点Qは点Pと同時に点(一般)を出発して、毎秒1の速さで 0まで進む。この間にP,Q間の距離が最小となるのは出発してから何 か。 また、その最小の距離を求めよ。 CHART SOLUTION 解答 ✓f(x) の最大・最小はf(x)の最大・最小を考える 基本 t秒後のP,Q間の距離をd とすると, 三平方の定理からd=f(t) の形にな る。ここでd> 0 であるから,d=f(t)が最小のときdも最小となる。 出発してからt秒後のP, Q 間の距離 を dとする。 P, Qは6秒後にそれぞ れ点 (6,0,0,0)に達するから 0≤t≤6 ...... ① このとき, OP=t, OQ=6-t である 6- TUAN JS x ◆ tのとりうる値の範囲 点Qのy座標は t-6 から, 三平方の定理により -6 d=t+(6-t)2=2t-12t+36 =2(t-3)2+18 よって、①の範囲の tについて, d2 は t=3で最小値18 をと る。 d> 0 であるから,このときも最小となる。 ゆえに、3秒後にP, Q間の距離は最小になり、 最小の距離は 18=3√2 である。 ◆軸t=3は①の範囲内 この断りは重要! 81-38 INFORMATIONdの大小はdの大小から らdが最小のときも最小に 右のグラフから ずその最小値を求めている。これはd>0でdが恋 例題では,d=√2+62の根号内のα+62 を取り出して,ま y Lv=5

未解決 回答数: 1
数学 高校生

数学II、微分の問題についての質問なのですが、下の写真の赤ボールペンで線を引いたところの、f'(x)が、なぜそうすると式が成り立つのか分かりません。下のf'(x)を用いた定積分の式は、何を表しているのか教えて頂きたいです🙇‍♀️

346 重要 217 3次関数の極大値と極小値の差 0000 |関数f(x)=x6x+3ax-4の極大値と極小値の差が4となるとき、定数の 値を求めよ。 X=8で極小値をとるとすると ページの例題と同じ方針で進める。x=αで極大値 x= f(a) f(B)を実際に求めるのは面倒なので、f(α)(B)をα-Bat Bag 大値と極小値の差が4f(α)(B)=4 (B)-(+)-4αβ を利用することで, a+B, aBのみで表すことができる。 (x)=3x²-12x+3a 解答 f(x)は極大値と極小値をとるから 2次方程式(x)=0 すなわち3x12x+3a= 0 ...... ① は異なる2つの実数 解α, β (a<β) をもつ。 よって、 ①の判別式をDとすると D>0 D=(-6)~3(3a)=9(4-a)であるから4-0 4 したがって a<4...... ② f(x)のxの係数が正であるから,f(x)はx=αで極大 x=βで極小となる。 f(a)-f(B)=(a³-ß³)-6(a²-B²)+3a (a-B) =(a-B){ (a2+αB+B2)-6(a+β)+3a} =(a-B){ (a+B)-αB-6(a+β)+3a} ①で,解と係数の関係より よって a+β=4, aβ=a a-B=-2√4-a (a-B)=(a+B)2-4aβ=42-4・a=4(4-a) <Bより、α-β< 0 であるから ゆえに f(α)-f(B)=-2√4-a (42-a-6・4+3a) 今回は差を考えるので、 x <βと定める。 α B... f'(x) + 0 (x) 極大極小 0 3次関数が極値をもつとき 極大値 > 極小値 ②から 4-a>0 よって√4-a>0 =2√4-a{-2(4-α)} =4(√4-a)³ 44-a=(√4-a)² f(a)-f(B)=4であるから 4(√4-a)=4 すなわち よって (√4-a)³=1 √4-a=1 Aa=1 の両辺を2乗し ゆえに, 4-α=1から a=3 これは②を満たす。 て解く。 定積分を用いた計算方法 自 討 f(α)-f(B) の計算は,第7章で学習する積分法を利用すると, らくである。 (a)-f(8)=f(x)dx=3(x-a)(x-B)dx=3{-1/(a-B)"} ←p.377 基本例題 240 (1) NE これにα-β-2√4-a を代入して,f(a)-f(B)=4(√4-a) となる。 の公式を利用。 関数f(x)=x+ax2+bx+c がx=αで極大値, x=βで極小値をとるとき, 17 f(a)-f(B)=1/2(B-a)となることを示せ。 [類 名古屋大]

未解決 回答数: 1
数学 高校生

(2)番についてです。6≦2a+5<7でなく6<2a+5≦7になるのはなぜですか?

54 基本 例題 31 1次不等式の整数解 00000 (2) 不等式 5(x-1) <2(2x+α) を満たすxのうちで,最大の整数が6であ (1) 不等式 6x+8(4-x) 5 を満たす2桁の自然数xをすべて求めよ。 るとき、定数αの値の範囲を求めよ。 CHART SOLUTION 1次不等式の整数解 数直線を利用 まずは、与えられた不等式を解く。 (1)不等式の解で、2桁の自然数であるものを求める。 基本で (2)不等式の解が、x<A の形となる。ここで,x<4を満たす最大の整数が6 であるということは, x=6 は x<A を満たすが, x=7 は x<A を満たさないということ。これを図 に示すと右のようになる。 A ズーム UP 不等 問題 m, nh max 例 (1) 6x+8(4-x)>5から ゆえにx2=13 -2x-27 2桁 -=13.5 は2桁の自然数であるから 14 10≤x≤13 10 11 12 13 13.5 x よって x=10, 11, 12, 13 (2) 5(x-1)<2(2x+α) から x<2a+5 ◆展開して整理。 ◆不等号の向きが変わる。 ◆解の吟味。 $3000 S 例 [1] 2 ① ◆展開して整理。 ①を満たすxのうちで最大の整数が6となるのは 6<2a+5≤7 のときである。 1<2a≤2 よって 1/12kas1 3 _RACTICE... 31 ③ 1) 不等式 x+ 2) 不等式 5(m 15 3 ① 6/2a+5<7 とか (6≦2a+5≦7 などとい 6 2a+57 x ないように等号の有無 に注意する。 注意 2 5-2 2 を満たす ①を満たす最大の整数 JO $50 > ◆α=1 のとき, 不等式は <7で、条件を満たす a = 1/2 のとき,不等式 $30 s> p <6で条件を満たさ ない。 ない」と答える 34 (2)-[0] 注意

未解決 回答数: 1