学年

教科

質問の種類

数学 高校生

数学A整数の性質の問題です。 (3)だけ何言ってるか全然わかんないです。 解答より丁寧に教えてほしいです。お願いします🙇

類題4 オリジナル問題(解答は39ページ) 太郎さんと花子さんは,2人で次のようなルールのゲームをしている ・ルール- ①太郎さんは,1桁の自然数を一つ選ぶ。 これを N とする。ただし,太郎 さんは、このNの値を花子さんに伝えない。 ②花子さんは,適当な自然数を一つ選んで太郎さんに伝える。この自然数 ANCIL をMとする。 1000 ③太郎さんは,MをNで割った余りを花子さんに答える。 13610% ④ 花子さんは,太郎さんが③で答えた数をもとに, Nの値を当てる。 例えば,N=3,M5のとき,太郎さんは ③ で花子さんに2と答える。 この とき, 花子さんは ④ でN=3であると必ず当てることができる。 このゲームについて,次の問いに答えよ。 (1)M=10のとき, 太郎さんは③で1と答えた。 このとき, Nの値として考 えられるものは, アとイである。 ただし, ア とイ の解答の順序を問わない。 (2)M=53のとき,太郎さんが③で答える数によっては, 花子さんが ④ で N の値を必ず当てることができる。 そのような太郎さんの答えは りある。 ウ 通 (3) 太郎さんが2を選んだとき, 花子さんが ④ でNの値を必ず当てることが できるようなMの値のうち、最も小さいものは であり,2番目に 小さいものはオカである。 (4)Nの値によらず,花子さんが④でNの値を必ず当てることができるよう な M の値のうち,最も小さいものはキクケコである。

回答募集中 回答数: 0
数学 高校生

0≦x<3を満たすものは(i)ではk=-1として、(ii)ではk=2としているのですが、どのようにしたらkの値を定められるのですか?

13問~ 第5問は,いずれか2問を選択し、 解答しなさい。 第4問 (選択問題) (配点20) みつよし じん 1627年(寛永4年) に吉田光由が著した「塵 劫記』 は, 身近な題材をもとに計量法や計算法 を解説した算術書であり, 寺子屋等で庶民にも 親しまれていた。 この中に 「油分け算」 と呼ば れる問題がある。 問題を現代風に書くと以下の ようになる。 問題 10Lの容器いっぱいの油を,7L の容器と3Lの容器を使って 5L ずつに 分けたい。 どのようにしたらよいか。 vallal TA a dest P corals 10-1 (出典: 京都府立京都学歴彩館 京の記憶アーカイブ) ここでは,最初油が10L入っている10Lの容器をP とし,7Lの容器を A, 3L の容器をBとする。 (1) 簡単のため, 別の 10Lの容器 Q があるとして,次の四つの操作を考えよう。 A :容器 P から容器 Q に, 容器 Aを用いて7Lの油を移す。 ⑧ : 容器 P から容器 Q に 容器 B を用いて3Lの油を移す。 A 容器Qから容器P に, 容器 A を用いて7Lの油を移す。 B : 容器 Q から容器P に, 容器B を用いて3L の油を移す。 操作とは逆の操作であるから,これらを組み合わせることは意味がないこ とに注意しよう。 操作 ⑤ とについても同様である。 数学Ⅰ・数学A 第4間は次ページに続く) (i) まず, 操作を回操作を回行うときを考える。 P (10L) A x=1x5+ A (7L) イ 2. B (3L) 操作を1回行った後、 操作を続けて Lの油が残る。 このとき, x=1. y= ア になっている。 この問題では, 不定方程式 7x-3y=5 の整数解 x,yを考えればよい。 この方程式のすべとし て ア Q(10) 行うと、容器Q には 1 は不定方程式x-3y=1の整数解 ym -〒×5+1 第1回 17 れる。 ① 整数x,yの中で, 0x<3を満たすものは I である。 したがって、操作を 行うことにより,P,QにそれぞれLずつのを分けることができる。 (数学Ⅰ 第4間は次ページに置く

回答募集中 回答数: 0