学年

教科

質問の種類

数学 高校生

なぜこの計算をするのかが分かりません 詳しく教えてください🙏

301 質を求めよ。ただし ■西大] 基本186190 つるから場合分けを 境目となる。 (2a) (2a)3-3a(2a)+5a³ Ba³-12a³+5a³ 000192 区間全体が動く場合の最大・最小 ①のののの (x)=10x+17x+44 とする。 区間 asxsa+3 におけるf(x)の 最大値を表す関数g(α) を, αの値の範囲によって求めよ。 SMART QTHINKING 最大・最小 グラフ利用 極値と端の値に注目 曲が変わると 区間 a≦x≦a+3 が動くから, αの値によって場合分けする 目はどこになるだろうか? 場合分けの境目はどこ 基本 190 yef(x) のグラフをかき, 幅3の区間 a≦x≦a+3 を左側から移動させながら考えよう。 大値をとるxの値が区間内にあるか, 区間の両端の値(α) f(a+3) のどちらが大 きいかに着目すればよい。 f(a)=f(a+3) となるαの値も境目となることに注意。 (x)=3x-20x+17=(x-1)(3x-17) a+3 <1 すなわち a < 2 のとき 17 x (x) = 0 とすると ... 1 17 x=1, 増減表から,y=f(x) のグラフは右下のようになる。 3 3 f'(x) + 0 - 0 + f(x) 極大 極小 小値をとるxの値 y=f(x)| 44 間に含まれる場合 g(a)=f(a+3)=(a+3)3-10(a+3)2 + 17 (a +3) +44 =a3-a²-16a+32 [2] at 3≧1 かつ α <1 すなわち -2≦a <1 のとき g(a)=f(1)=52 21 のとき,α)=f(a+3) とすると 整理すると a10a2+17a+44-a³-a2-16a+32 9a2-33a-12=0 最小 2a 3 x って (3a+1)(a-4)=0 a≧1 から a=4 17 3 7.1 直をとるxの値 [3] 1≦a <4 のとき g(a)=f(a)=a-10a² +17a+44 15.6 含まれない場合 [4] 4≦a のとき g(a)=f(a+3)=α-α-16a+32 4 [2] [1] y y=f(x); y y=f(x); [3] y | y=f(x); [4] y=f(x) 52 27 最小 Fa+3 32a x O 0. a1a+317 x 3 a a+3 6章 21 関数の値の変化 0 a. La+3 4 7 。g(a) [岡山大〕 a=4 のとき, 最大値を異なるxの値でとるが, xの値には言及していないので, 4≦α として [4] に含めた。 PRACTICE 1926 す関数 g(α) を αの値の範囲によって求めよ。 /(x)=2x-9x2+12x-2とする。 区間 a≦x≦a+1 における f(x) の最大値を表

回答募集中 回答数: 0
数学 高校生

どうしてS(2n)でやるんですか?

63 32 部分和 San-1 S2 を考える ののののの 1 無限級数 1 1 + +.. ****** 32 22 33 の和を求めよ。 基本31 2章 無限級数 国の和であ ように してもより →0, のとき CHART & THINKING 無限級数 まず部分和 S 基本例題31と同じと考えて,第n項を (1) とし,和Sを 右のように求めてはいけない。 ここでは,( )がついていないから, やはり, S を求めて n→∞の方針で解く。 ところが, S は奇 数項までと偶数項までで異なるから, nの式では1通りに表されない。 S=- 12 1 よって, S2n-1, S2 の場合に分けて調べる。 S21-1 は S27 を用いて表すことを考えよう。 [1] limS2-1 = limSzn = S ならば limS=S →8 [2] limS2-1≠lim Szn ならば {S} は発散 8818 注意 無限級数の計算では、勝手に()でくくったり, 項の順序を変えてはならない! この無限級数の第n項までの部分和を S とする。 S2n=1- Sz.-1-1+1-3+1-31+ 2 32 22 = (1 + 1/2 + 1/2 + ----+ 2 1 -1) 22 ・+ 1 3 + + 32 +......+ 33 3n 1 1-3 1 1 2-1 3" ←部分和 (有限個の和) な ら()でくくってよい。 初項1,公比の等比数 列の和。 2 1 1 2 数列の和。 1 1 2% 2 3" 2 よって lim S2n=2- 1 3 n→∞ 2 2 また lim S27-1=lim(S2n+3)= lim S2n+lim n→∞ n→∞ 718 lim Szn=lim S2n-1 →∞ 3 2 であるから, 求める和は この例題の無限級数 α+b+a2+b+....+an+bn+ の和は,無限級数 inf. =0,lim/ -=0 = lim S2nS2n-1=S2n-azn n-00 - S.-(-3) =S2n- {San} も {3} も収束する。 (a+b)+(az+bz)+…+(an+6m)+・・・・・・ の和と同じ結果になる。 結果が異なる場合に ついては, PRACTICE 32 の解答編の inf. や EXERCISES 30 を参照。 PRACTICE 323 2 2 lim 1-∞0 271 ... B 3" n→∞ 2 3|2 七級数の収束薬品 または[r]<1 和は を確認する。 次の無限級数の和を求めよ。 (12/2/+/+//+//+/12/23+1/2/3+..... (2) 1++++++++ 3 4 9 8 27 +...... 864A 出

解決済み 回答数: 1
数学 高校生

二次関数のグラフです 下の方に青でマークしてるところが、なぜそうなるのか教えてくださいm(*_ _)m

ようにして 8 8-2 係数 とき、い 本 例題 52 2次関数の係数の符号とグラフ 2次関数y=ax2+bx+c のグラフが右の図で与えら れているとき、次の値の符号を調べよ。 (1) a (2) b (4) b2-4ac (5) a-b+c (3)c 00000 が x CHART & THINKING D.91 基本事項 4. 基本 51 グラフから情報を読み取る 式の値は直接求めることができない。 「上に凸か,下に凸か」, 「軸や頂点の位置」, 「軸との交点の位置」 などに着目して, 式の値の符号を調べよう。 カ 上に凸か, y 頂点のy座標は? 下に凸か? 3章 x=-1 における 10 y座標は? 7 x Ly軸との交点の 位置は? |軸の 位置は? 関数とグラフ ax+bx+c=a(x+2)-B-Aac 4a b2-4ac よって, 放物線y=ax2+bx+c の軸は直線x= 頂点の座標は b 2a' 4a が る。 また, x=-1のとき ax2+bx+c =(x+1/x)+c a b E,y軸との交点のy座標はcal{(x+2)-(2)}+c y=a(-1)2+6(-1)+c=a-b+c =dx+20 \2 b 2a = a(x+2)-a (20) + c |= a(x+2)²= \2 62-4ac 4a (1) グラフは上に凸の放物線であるから a <0 b <0 2a (2) 軸がx<0 の部分にあるから (1)より, a<0 であるから (3)グラフがy軸の負の部分と交わるから (4)頂点のy座標が正であるから b<0 c<0 b2-4ac0 4a (1)より, a<0 であるから (b2-4ac)<0 すなわち b2-4ac > 0 (5) a-b+c は, x=-1 におけるyの値である。 グラフから、x=-1 のとき すなわち a-b+c>0 y>0 F b ・>0 2a ←放物線y=ax2+bx+c について, x軸と異なる2点で交 わる 62-4ac > 0 PRACTICE 52Ⓡ 右の図のような2次関数y=ax2+bx+c のグラフについて 次の値の正, 0,負を判定せよ。 (1) a (4)62-4ac (2) b (3)c (5)a+b+c (6) a-b+c が成り立つ (p.139 以降 を参照)。 x

解決済み 回答数: 1
数学 高校生

(2)の解説の6<2a+5≦7の7は、一体どこから来たんですか?

60 ③24 基本 例題 33 1次不等式の整数解 不定! (1) 不等式 6x+8(6-x) > 7 を満たす2桁の自然数xの個数を求めよ。 (2)不等式 5(x-1)<2(2x+α) を満たすxのうちで,最大の整数が6であ るとき, 定数αの値の範囲を求めよ。 基本 29,32 CHART & THINKING 1次不等式の整数解 数直線を利用 まずは, 与えられた不等式を解く。 (1) 2桁の自然数x≧10 これと不等式の解を合わせて、条件を満たす整数xの値の 範囲を10≦x≦n の形に表す。 この不等式を満たす整数の個数は? (2)不等式の解はx<Aの形となる。 数直線上で A の値を変化させ, x<Aを満たす最大 の整数が6となるのはAがどのような値の範囲にあるかを 考えよう。 → x=6 は x < A を満たすが, x=7 は x<A を満たさないことが条件となる。 6 A 7 x 解答 (1) 6x+8(6-x) > 7 から 41 ゆえに x< -=20.5 xは2桁の自然数であるから 10≦x≦20 求める自然数の個数は 20-10+1=11 (個) (2)5(x-1)<2(2x+α) から 2x>-41 2桁 21 ← 10 11 20 41 2 x<2a+5 ••••.. ① ①を満たすxのうちで最大の整数が6となるのは 6<2a+5≦7 ←展開して整理。 不等号の向きが変わる。 解の吟味。 x のときである。 ① ゆえに 1<2a≦2 6 2a+57 x よって1/12 <as1 ①を満たす最大の整数 展開して整理。 6<2a+5<7 とか ま 62a+5≦7 などとし ないように。 等号の有 無に注意する。 ←a=1のとき、不等式は <7 で,条件を満たす。 本 a=1/2 のとき,不等式は <6 で、条件を満たさ ない。

解決済み 回答数: 1
数学 高校生

大至急です‼️ィの問題がわかりません! 解説を見たのですがイメージがしにくくて、、、 図有りなどで解説頂けると有難いです🙏🏻

基本 例題 14 0 を含む数字 0000 □個ある。そのうち3の倍数になるものは 個である。 基本 13 0, 1, 2, 3, 4から異なる3個の数字を選んで作る3桁の整数は,全部で CHART & THINKING 百 0 を含む数字の順列 最高位の数は0でないことに注意 (ア) 0 を含む5個の数字から、3桁の整数を作る。 何に注意すればよいだろうか? 百の位に 0 がくると, 3桁の整数にならない。 →5P3 を答えとするのは誤り! →まず, 百の位には 0 以外の4個の数字から Pan 田日 20以外の百に入れた数字を除く 4個から2個並べる 4通り 4P2 (通り) 1個選び,残りの位には百の位以外の4個の数字から2個取って並べるP (イ)3の倍数になる3桁の整数は,各位の数の和が3の倍数 (p.281 参照)。 更に, 0 を含むかどうかで場合分けして考える。 答 (ア) 百の位には0以外の数字が入るから 別解 そのおのおのに対して, 十, 一の位の数字の並べ方は,残 りの4個から2個取る順列で 4P2=4・3=12(通 よって, 求める整数の個数は 4×12=48 (個) ar 0, 1, 2, 34から3個取って並べる順列の総数は 5P3=5・4・3=60 (通り) ると この このうち, 百の位が0になるような3桁の整数は,全部で 4P2=4・3=12 (通り) 並 よって, 求める整数の個数は 60-12=48 (個) (イ) 0, 1,2,3,4のうち和が3の倍数になる3数の選び方は [1] {0, 1, 2}, {0, 2, 4} の2通り [2] {1,2,3}, {2,3,4} の2通り (C) SI- [1] 百の位は0でないから, 各組について, 3桁の整数は 2×2!=4 (個) [2] 各組について, 3桁の整数は 3!=3・2・1=6個) よって, 3の倍数になる3桁の整数の個数は 4×2+6×2=20 (個) 最高位の条件に注目。 積の法則。 4 右 最初は0も含めて計算 し、後で処理する方法。 012など最高位が0にな 0□□の形の数を引 く。 Aが3の倍数の判定法: XAの各位の数の和は 3の倍数である。 ←[1] 0を含む。 YO ← [2] 0 を含まない。 赤

回答募集中 回答数: 0
数学 高校生

解答のところでなぜy軸との交点のy座標はcであるのかがわかりません。 教えてください🙏

基本例題 52 2次関数の係数の符号とグラフ 2次関数y=ax2+bx+c のグラフが右の図で与えら れているとき,次の値の符号を調べよ。 00000 y (1) a (2) b (4) 62-4ac (5) a-b+c CHART & THINKING グラフから情報を読み取る (3)c p.91 基本事項 4.基本51 上に凸か, 頂点の座標は? 式の値は直接求めることができない。 「上に凸か,下に凸か」, 「軸や頂点の位置」, 軸との交点の位置」 などに着目して、 式の値の符号を調べよう。 下に凸か? 3章 x=-1 における 10 座標は? 7 x 軸との交点の 位置は ? 軸の 位置は? 解答 関数とグラフ ax2+bx+c=ax+ b 2a 62-4ac ax2+bx+c 4a よって, 放物線y=ax2+bx+c の軸は直線x=- b2-4ac 頂点の座標は 4a る。 b =a(x²+x)+c 2a" y軸との交点のy座標はcであ ={(x+2 b2 b +c 2a) =(x+2)- b +c 2a また, x=-1のとき y=a(-1)2+6(-1)+c=a-b+c =a(x+1)² 62 62-4ac 2a 4a (1) グラフは上に凸の放物線であるから a <0 b b (2) 軸が x<0 の部分にあるから <0 2a ->0 2a (1)より, a < 0 であるから (3) グラフがy軸の負の部分と交わるから (4)頂点のy座標が正であるから b<0 c<0 b2-4ac >0 4a (1)より, a<0 であるから -(b2-4ac)<0 すなわち b2-4ac > 0 (5) a-b+c は,x=-1 におけるyの値である。 ←放物線y=ax2+bx+c について, x軸と異なる2点で交 わる⇔ b2-4ac > 0 が成り立つ (p.139 以降 を参照)。 グラフから,x=1のとき y>0 すなわち a-b+c>0 PRACTICE 52Ⓡ ③ 右の図のような2次関数y=ax2+bx+c のグラフについて, 次の値の正。 0負を判定せよ。 (1) a (4)62-4ac (2) 6 (3)c (5) a+b+c (6) a-b+c 0 1

解決済み 回答数: 1