学年

教科

質問の種類

数学 高校生

東工大数学 採点していただきたいです。 途中まで(ノートの左下)で間違えています 50点中何点もらえますか?

24 する。 辺ABを xl-x (0≦x<l) の比に内分する点Pと,辺ACをy: l-y (0≦y<1> の比に内 分する点Qをとり、線分BQ と線分 CP の交点をRとする。 このとき, RがAM に含まれるような (x,y) 全体をxy平面に図示し, その面積を求めよ。 (ただし、道 AB. 辺ACを0:1の比に内分する点とは,ともに点Aのこととする。) 2003年度 (3) △ABCにおいて, 辺ABの中点をM. 辺ACの中点をとする。 ポイント 前半は、平面ベクトルの典型問題である。 平面上のどのようなベクトルも その平面上の2つのベクトルa, a≠0. b=0, ax b) を用いて, Bb (a. B は実数) の形に表されること, そしてその表し方は1通りであることは重要な事実であ る。また、△ABCの間および内部にある点Pは, AP=αAB+ BAC (a+β≦1,420 B20) で表されることもマスターしておくべき基本事項である。 520) 不等式の表す領域の図示と面積を求めるための定積分計算である。 解法 △ABQにおいて, AQ=yAC (0≦y<1) であるか ら,実数s を用いて AR = (1-s) AB+syAC (0≦s≦1) ...... ① と表せる。 また, ACP において, AP=xAB (0≦x<1) であるから実数を用いて AR=AB+(1-1) AC (0≦t≦) ....... ② と表せる。 ABとACは1次独立 (AB AC. MEAN AB≠0. AC ±0) なので ①②より したがって. ①より AR=(1-1-4) AB+1-5 1-xy ここで -xyAC= x (1-y) 1-xy B 1-s=tx, sy=1-1 が成り立つ。 0≦x<1,0≦y<1に注意して, この2式からtを消去すると 1-1 E'S (1-x) -AB + Level B M O P _y(1-x) -AC 1-xy x(1-y) 1-xy とおくと AM= y (1-x) 9= 1-xy AM-AR AN-ACCA& AR=pAB+qAC=2pAM+2qAN となり、点Rが△AMN に含まれるためには xy- 2p+2q≦1④ が成り立つことが必要十分である。 ③を用いると, ④ ⑤ はそれぞれ y(1-x)206 1-xy x+y-2xy=-xy = 1-xy 0≦x<1,0≦y<1より. ⑤'は成り立つ。 また, 0≦x<1,0≦y<1に注意して, ④'を変形す ると よって, 0≦x<1,0≦y<1のもとで, ④’を満たす 点(x,y)をxy平面に図示すると、右図の斜線部 分(境界はすべて含む)になる。 すなわちy=1/1 23 2p20. 2q205062 [注]不等式 (x-2)(x-2/31) 2010/19 リー = x (1-y), -≥0. 1-xy 5- £² (1.-7. 3) 4 S= 9 2 ---- (10)+ §3 平面図形 129 UN + 1/23 を描く。 次に、この境界線で区切られた3つの部分の1つを選 y= の表す領域を図示するには、まず境界線 (x-2)(x-2)=1/ *3 び、その中の1つの点の座標を不等式に代入してみて、成り立てばその点を含む部分に 斜線を施し(同時に境界線をまたいだ隣の隣にも斜線を施す)。 成り立たなければ隣の 部分に斜線を施す。 正領域∫ (x,y) > 0.負領域f (x,y) <0は境界線をまたいで交互に 現れることを利用するのである。 さて 求める面積をSとすると

回答募集中 回答数: 0
数学 高校生

この問題の⑵なんですが、 三枚目のm>4あたりの場合分けで、 場合分けⅠは②の点が3より上にあることが 条件なのに、なぜ場合分けⅡでは②上の点が③より下、または③の上にあるのが条件なんですか? (Ⅰは5,24という上の点を基準にしているのに Ⅱで下の3,8を基準にしている理... 続きを読む

102 2次方程式・2次不等式の整数解 整数mに対し, f(x)=x-mx+"-1 とおく。 (1) 方程式f(z)=0 が,整数の解を少なくとも1つもつようなの値を求め よ。 (2) 不等式 f(x) ≧0 を満たす整数xが,ちょうど4個あるようなmの値を求 めよ。 (秋田大) f(x) の式にはmの1次の項しか含まれていないことに着目する と, f(x)=0, f(x) ≧0 は “パラメタの分離” によって, 放物線 精講 y=-1と直線y=m(x-121) の関係に帰着されます。 解答 また,整数問題とみなすと, (1)では解と係数の関係を利用して2つの整数解 の満たすべき関係式が導かれます。 (2)では, 不等式 f(x) ≧0 を満たす整数が ちょうど4個であるとき, 不等式の解の区間幅からmを絞りこむ方法もありま す。 (1) 2次方程式 f(x)=0, つまり x2-mx+ -1=0 m x2-1=mx ²-1= m(x-1) ......1 の実数解は放物線y=x2-1 ・②と直線 y=m(x-1) •••••• ③ の共有点のx座標に等し 第1章 ① において, (2解の和)=mが整数であるから, 解の1つが整数のとき、 他の解も整数である。した がって“②③ 2つの共有点をもち,それらの 座標が整数である”..… (*) ようなmの値を求め るとよい。

回答募集中 回答数: 0
数学 高校生

数ⅠAデータの分析です これどうして6番は◎になるんですか?? 例えば第一四分位数が整数でないとき、それより小さい値を削除したら最小値は第一四分位数より大きくなって範囲が変わりますよね? 画像横ですみません

650 700 (分) 図1 15歳以上の男性の各活動の時間(単位:分) の47都道府県別の平均値の箱ひげ図 I 450 オ 500 550 このデータと箱ひげ図について, 正しいと判断できるものは オ である。 600 I - 39 - と の解答群 (解答の順序は問わない。) ⑩ 1次活動のデータの値が最大である都道府県と, 2次活動のデータの 値が最大である都道府県は同じである。 OVE 081 ① 1次活動のデータの値が最大である都道府県と, 2次活動のデータの 値が最小である都道府県は同じである。 × 1次活動, 2次活動, 3次活動のうちで, データの範囲が最大である のは1次活動である。 ⑩ 1次活動, 2次活動, 3次活動のうちで,データの四分位範囲が最大 であるのは1次活動である。 ④ 1次活動, 2次活動,3次活動のうちで,どの都道府県も1次活動の データの値が最も大きい。 ⑤2次活動のデータにおいて,第1四分位数より小さい値と,第3四分 23 位数より大きい値をすべて削除すると、残りの値の個数は25個である。 ⑤ 次活動のデータにおいて、 第1四分位数より小さい値と、第3四分 位数より大きい値をすべて削除すると, 残りの値からなるデータの範囲 は,もとのデータの四分位範囲に等しい。 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

数I文字係数の方程式の問題です。 (3)の解説を見たのですが、理解ができなかったので、解説をお願いしたいです。

例題 次のxについての方程式を解け。 (1) x2+(a−2)x-2a=0 (2) ax²-2x-a=0 (3) ax-2ax+a=0 思考プロセス (2),(3)問題文では,単に「方程式」 となっており,2次, 1次方程式とは限らない。 場合に分ける (x2の係数)=0のとき (x2の係数) ≠0のとき 1次方程式を解く 2次方程式を解く (例題82参照) Action » 最高次の係数が文字のときは, 0かどうかで場合分けせよ (1) x2+(a−2)x-2a=0 より (x-2)(x+a)= 0 x=2, -a よって 10 (2)(ア)a=0のとき,この方程式は これを解くと x = 0 (イ) α = 0 のとき, 解の公式により -(-1) ± √(-1)²-a (-a) x= AN (ア), (イ)より a ² +1>0 より,これは解として適する。 α = 0 のとき α = 0 のとき (ア)~ (ウ)より x= la=0のとき a=2のとき -2x = 0 α = 0, 2 のとき = x=0 x= (3) ²x-2ax+α = 0 より a(a−2)x=-a (ア) α = 0 のとき, この方程式は 0.x = 0 よって, すべてのxで成り立つから, 解はすべての実数。 (イ) a=2のとき, この方程式は 0.x = -2 この式は成り立たないから,解はない。( 1 (ウ) α = 0, 2 のとき -2 a- 1± √a² +1 1$ 1± √²+1 Ca a 20 0 = 88 - 1 2-a x²+(a+B)x+αβ=0 (x+α)(x+β)=0 a=0のとき, 与えられ た方程式は1次方程式と なる。 のとき U すべての実数 解なし 08-28- x = _ 1 (²-x) (S 2-a S- 2次方程式 ax2+26′x+c=0 の解は es x= -b'±√√b²-ac a α = 0 の可能性があるか ら、いきなり両辺をαで 割ってはいけない。 x=- a a(a − 2) 3 章 a(a−2) ≠0 より,両辺 をa(a−2) で割って a-2 ROCK JOHAJ 8 2-a 2次関数と2次方程

回答募集中 回答数: 0
数学 高校生

数学IIIの双曲線の分野の問題です。 双曲線の接線の式の求め方で、 解答の求め方では①双曲線の式から傾きを求める②傾きaで点(x1, y1)を通る直線の式の公式 によって接線の式を求めているのですが、 僕は双曲線の接戦の公式をそのまま使いました。 そしたら結果が異なってしま... 続きを読む

14:14 12月17日 (日) × No 化学 | 双曲線 : 数学B ⑩傾き既知接線の定数決定 22 y² 4x1 Y₁ 16 64 m を実数とし, 直線l: 2(m²+1)x- (m2-1)y=16m を考える. を 1/1の1次式で表せ (ウ) 直線lがC上の点(第1,3/1)に接するとき [Ra] 4キロのとき 4x1 y=- (x-x)+y1 を満たすときである。 数学III y₁y=4x₁(x-x₁) +y₁² JA 4x-yy=4x²-y12 であり、 これは1=0のときも成り立つ。 直線がこの接線と一致するのは0でない実数kが存在して [2(m²+1)=4xik m²-1=y₁k3 16m=(4x²-yl) ④ 7/33 数学III =1 について, 以下の問いに答えよ. ② より m²+1=2xk ......②' なので, ②③ から(ペール 2 = (2x₁-y₁) kN DES BUCALLA |(dy = ピ よって ④より m= 13-- n (4x²-y₁²) k 16 × (2x+y)(2x-yi) k 16 2x+yi 8 数学A 2x1+11.2 16 -Point! 実数kを 係数比車 2x₁+y₁. (2x1-y₁) k 16 ・・・・・・ () ・接線 Yıy 64 mxix-myly=16m x 21 m ² MIL. myc ℓ:2(mati)xc-(m²-1)y=16m と係数比較して、 mxci=2(m2+1) ニー(m'-`) my : Y = 42₁₁ "ti ①を②に代入して、 m= -1 ①. -=-1)} 2 my12mxi-8 TAH ② 8 20-YI Y! P .x.. I............ 64. : 75% 完了

回答募集中 回答数: 0
数学 高校生

(3)の質問です。 2200=〜(k≧5)までは分かりました。 そこからk=5を試せませんでした。どう試そうと思うのですか? またk^3の位に注目して〜のところでは、例えばk=6のとき、5k^3は2200より小さくなると思うのですが、なぜこの不等式が成り立つのですか? ... 続きを読む

第2問~第4問は,いずれか2問を選択し、 解答しなさい。 第3問 (選択問題(配点20) 自然数Nを7進法で表すと3桁の数 abc (7) となり, 8進法で表すと3桁の数 cba(s) になるとする。 (1) このような自然数Nを求めよう。 a, b, c について が成り立つ。 変形すると アイla-b- アイ b= a= と オ ウエ c=0 ウエ の最大公約数は カキ a- クケ となる。よって, 条件を満たす α, b,c は b= サ である。 したがって,Nを10進法で表すと, N = C= オ スセソ であるから、この等式を である。 (数学Ⅰ・数学A 第3問は次ページに続く。 (2) Nを5進法で表すと, タチツテ である。 (5) (3) 10N を進法で表すと, 4230(k) となった。 このとき, ト k= となる。 (4) 10Nの正の約数は全部でナニ個ある。 これらのうち, 2の倍数はヌネ 個, 4の倍数はノハ 個 8の倍数は ヒ 1個ある。 したがって10N のすべての正の約数の積を2進法で表すと,末尾には 0 が連続 して フへ 個並ぶ。 LE

回答募集中 回答数: 0