学年

教科

質問の種類

数学 高校生

下の方、縦線の右側にk=4+√14のときは第3象限で接する接戦となるとありますがなぜですか??

6:1 x, が2つの不等式x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, 最大値と最小値, およびそのときのx, yの値を求めよ。 の y-2 x+1 基本122 連立不等式の表す領域Aを図示し, y-2 x+1 -=kとおいたグラフが領域Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy2=k(x+1)は,点(1,2) を通り, 傾きがんの直線を表すから,傾きんのとりうる値の範囲を考えればよい。 CHART 分数式 y-b y-b 最大 最小 =kとおき, 直線として扱う x-a x-a x-2y+1=0. ①, x2-6x+2y+3= 0 解答とする。連立方程式 ①,②を解くと ② ③ (x, y)=(1, 1), (4, 5) ゆえに、連立不等式 x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 A は図の斜線部分である。 ただし, 境界線を含む。 y-2 x+1 =kとおくと 10 y-2=k(x+1) 12 2 0 5 2 32 すなわち y=kx+k+2. ...... ③は,点P (-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき,k の値は最大となる。 ② ③ からy を消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると k(x+1)-(y-2) = 0 は, x=-1, y=2のとき についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 D =(k-3)²-1-(2k+7)=k²−8k+2 直線 ③ が放物線 ②に接するための条件はD=0であるか k=4±√14 ら, k-8k+2=0 より 第1象限で接するときのんの値は 4/14k=4+√14 のときは, このとき、接点の座標は (√14-1,4√14-12) 第3象限で接する接線と なる。 次に,図から, 直線 ③ が点 (1, 1) を通るとき,kの値は最 小となる。このとき k=1=2=123k=メ 277に代入。 よって 1+1 x=√14-1,y=4√14-12 のとき最大値 4-14; 1 x+1 x=1, y=1のとき最小値 - 2

回答募集中 回答数: 0
数学 高校生

比例式 、サイクリックな式の本質は、 軌跡領域の逆像法でパラメータの存在条件を考える時と同じですか?

11 比例式, サイクリックな式 xy+yz+zx (ア) x+4y y+4z z+8エ 3 をみたす正の実数x, y, z について, 2+12+22 6 4 (椙山女学園大) である. I (イ) y Z y+z 2+1 このとき,この式の値は,x+y+z=0のとき x+y x+y+z=0 の (麻布大獣医) とき である. 比例式はとおく 条件式が ==形(ry:z=a:b:cを意味する比例式)で与えら abc れたときには、この分数式の値をkとおくのが定石で、こうすると計算にのせやすい。 サイクリックな式 (イ)の式の値をとおくと,r=k(y+z) などとなる.ここで, x,y,zをそれぞれy,z, xに入れ替えていくと, x=k(y+z) ⑦ y=k(z+x) ⇒ z=k(rty)..・・・・ウ となり,もう1回やると⑦⑦になる. このように,文字がグルグル回る, ア~⑦を サイクリックな式を言うが、この3式を辺ごとに加えると対称式になり,扱い易くなる. 解答 (ア) x+4y y+4z 2+8x 3 =k (k>0) とおくと, x, y, zが正により, k>0 6 4 x+4y=3k ①y+4z=6k... ②, z+8x=4k...... ③ ①によりェ=3k-4y で, これと③から z = 4k-8=32y-20k これを②に代入して, y+4(32y-20k)=6k 等式の条件は,文字を消去するの が原則 86 2 129 3 y= -k= ==k, I=3k-- 4 -k, z=4k- -k= -k 3 3 E そのままk=31 (1>0) とおいて,r=l, y=21,z=4l 大変 1-21+21-41+41.1 _2+8+4 14 2 よって, 求値式= = 2+(21)+(41) 2 1+4+16 21 23 I (イ) y 2 =k...... ① とおくと, y+z z+x x+y x=k(y+z) +42-6 2+8x-4f 1 k>o ②,y=k (z+x)...... ③, z=k(x+y)......④ ②+③ + ④により,x+y+z=2k(x+y+z) 1°x+y+z≠0のときは, これで割って,k= 1 2 2° x+y+z=0 のとき, y+z=-xとなり,①によりk=-1 注1°のとき,②③によりx-y=1/2 (y-x)となるから,r=y よって①とから,r=y=z となる. ←前文参照. 11 演習題 (解答は p.28) y+4(223-200 36 b+c c+a a+b b+c とする.このとき、 の値は (1) であり,a+b+c=0 a b C a a+b+c+6abc のときの の値を求めると (2) である. (福岡大) (b+c)a 後半は1文字消去すれば 解決する。

回答募集中 回答数: 0
数学 高校生

(2)で「-1/√3<m<1/√3」からXの範囲を求めるとき、 解答のようにではなくて、三枚目のように考えてしまいました。 これでうまく求められないから、 解答のようにYの範囲を求めて図を描くことで、Xの範囲を求めよう! っていう思考回路ですか?

偶数の関係を使った ④よりm=1/2で⑤に代入しY=1/2x2-2x ③ ④ により,X < 0 または 8 < X 2 X,Yをx, y に書き換え, 求めるMの軌跡は よって, X=2m……… ④ であり,Mは①上にあるから,Y=mX-4m...⑤ X D=m²-4m>0 .. <0 または 4<m (3)P,Qの座標をα,βとし,M(X, Y) とおくと,x=α+B αβは②の2解であるから,解と係数の関係により,a+β=4m 2 ③ これから軌跡の限界が出てく P,Qの座標をm で表す必要 このようなときは具体 急がず、とりあえず文字でお ⑤ではなく. 34 y=14x²-2x Y= 16 y= x²-2x (x<08<x) であり,右図太線である (○を除く) 8 I 1-1/2 (+) (a+B)-2a8 8 =2m²-4m と ④ からYをXで表しても たことはないが(本間の場 ⑤ (直線上にあること)に着 るのがうまい。 補助に考える。 円が を通るときは別に調 く。 12 演習題 ( 解答は p.104) 円(x-2)2+y2=1と直線y=mzが異なる2点P, Qで交っているとき, (1)の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は その座標を明示せよ). (群馬大理工,情/改題) Mが直線上にある をうまく使う、なお 形的に解くことも る.

回答募集中 回答数: 0
数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0
数学 高校生

これの(2)の解き方の考え方を教えて欲しいです。

C1-40 (226) 第3章 平面上の Think 題 C1.22 ベクトルと軌跡 平面上に△ABC があり, 実数kに対し、 12p=46+5c-kc-b) 3PA +4PB+5PC=kBC を満たして動く点Pがある。このとき,次の問いに答えよ. (1) kがすべての実数値をとって変化するとき, 点Pの描く図形を図示 せよ. (2)△PAB, △PBCの面積をそれぞれ, S, S2 とするとき S:S2=1:2 となるようなkの値を求めよ. 考え方 (1) 点Aを基点として,AB=AC=CAP= とおいて与式に代入し、 の形に変形するは,を通りに平行な直線) 解答 wwwwwwwww (2) △ABCの面積をSとし,まずは S, S2 をそれぞれSで表す。 (1)点Aを基点とし,AB=1, AC=C, AP= とおく. 3PA+4PB+5PC=kBC より 3(-)+4(-)+5c-p)=k(c-b) AP: AQ=3:4 ...... ② より 4 41 38' 3 ベクトルと図形 (227) C1-41 **** であるから,S:S2=12 のとき, ST -S 80 △ABQの面積を S3 とすると, もう片方を特定 したがって, BQBC=1:6 ...... ③ 次に, ①を変形すると, △ABC: △ABQ =BC: BQ 0 んを含まない部分 12 46+5cc-6) ......1 (動かない) と, kを含 12 む部分(動く)に分け 49 3.46+52 (-b) る. -5-(-6)=5¬BC 9 12 9 10 A AP= (4+k)+(5-k)c 12 であり,②より ATH 0 AQ=1/AP=12(4+k)+(5-k)c 3 (4+k)b+(5-k)c よって, 交点の付 9 BQ=AQ-AB 12 (4+k)b+(5-k)c 一言 上の点である. 9 より,Qは直線 BC 点PがABCの内部 の場合と外部の場合が ある. 45246 第3章 4+k 5-k_9 1 9 9 9 RA 12 3-4 A 線分 BC を 54 に内分する点を D, 線分AD を だからBQBC-156k1 ORO 9 3:1 に内分する点をEとすると, wwwwwwwww A ADBC-AEBC 002+111.015-k=1 6 GO+AO-1 FP G wwww よって,点Pは点E を通り辺BC に平行な直線上 にある. RIA 3 5-k=± Q E 6 + P 11 その直線と辺 AB, AC の交点を F, Gとすると, AF: FB=AG: GCA B 5-D--4-C よって、 k = 1/12 1/27 7 13 2' =AE ED =3:1 であるから,点Pの描く図形 は、 右の図の直線 FG である. F P B PF G Q1B C kがすべての実数値を とるので,直線 FG と なる. 注》頂点Bを基点とし、BA=BC=BP=_ とすると 3PA+4PB+5PC-kBC 1, 3(a-p)+4(-p)+5(c-p)=kc となる. 5-k P この式を整理すると, 12 よって、点Pは,辺AB を 3:1に内分する点 F を通り直線 BC に平行な直線上を動く. B C 練習 01.22 ABCがあり実数kに対して、点PがPA+2P+3PC=kAB を満たすも B1 B2 ADDを求めよ C1 (2)直線APと直線BCの交点をQ とすると, FG/BC より AQ:PQ=AB:FB=4:1 したがって,△ABCの面積をSとすると,点Pが どこにあっても,△PBC の面積 2 は一定で, S= s

回答募集中 回答数: 0
数学 高校生

(1)の問題に関して、チャート&ソリューションの9行目、y=k上に(2n-2k+1)個の点があるとはどういうことですか?

90 重要 例題 102 格子点の1 次の連立不等式の表す領域に含まれる格子点 (x座標, y である点)の個数を求めよ。 ただし, nは自然数とする。 (1) r≥0, y≥0, x+2y=2n CHART OLUTION 格子点の個数 0000 座標がともに 整数 (2) x≥0, y≤n², y≥x² MOITUIO の 直線xk または y=k上の格子点を求め加える...... 「不等式の表す領域」は数学IIの第3章を参照。 基本的 (1) n=1のとき n=2のとき 具体的な数を代入してグラフをかき, 見通しを立ててみよう。 n=3のとき yA ya YA x+2y=2・3 x+2y=2.2. -3 x+2y=2・1 Yo -2€ 2 -16 -10 1 0 2 3 0 2 3 4 5 n=1のとき 1+3=4, n=2のとき 1+3+5=9, (1) 解 n=3のとき 1+3+5+7=16 一般の場合については,境界の直線の方程式 x+2y=2n から x=2n-2y ………,0)上には(2n-2k+1)個の格子点 よって、 直線 y=k (k=n, n-1, が並ぶから (2n-2k+1)において, k=0, 1, ..., nとおいたものの総和が 求める個数となる。 び直 (2 J (2) n=1のとき n=2のとき n=3のとき A y y=x21 -yA y=x2+ (I-YA y=x -9 0 n=1のとき n=2のとき x 0 (1−0+1)+(1-1+1)=3, -4+ -1 x (4−0+1)+(4−1+1)+(4−4+1)=10, (9-0+1)+(9-1+1)+(9-4+1)+(9-9+1)=26 n=3のとき 一般(n) の場合については,直線x=k (k=0,1,2, n-1, n) E nとおいたものの総和が求める個数となる。 また、次のような, 図形の対称性などを利用した別解も考えられる。 (1)個の格子点が並ぶから,(n+1)において,k=0, 1, (1)の別解 三角形上の格子点の個数を長方形上の個数の半分とみる。 このとき、対角線上の格子点の個数を考慮する。 01- (2)の別解 長方形上の格子点の個数から 領域外の個数を引いたものと考える。

回答募集中 回答数: 0