学年

教科

質問の種類

数学 高校生

17. 記述これでも問題ないですか??

36 FREL 基本例題 17 分数式の恒等式 a/00000 次の等式がxについての恒等式となるように,定数a,b,cの値を定めよ。 -2x2+6 has b c (x+1)(x-1)2x+1 x-1+(x-1)^2 = 指針▷分数式でも,分母を0とするxの値 (本問では−1, 1)を除いて,すべてのxについて成 り立つのが恒等式である。 与式の右辺を通分して整理すると -2x²+6 a(x-1)²-b(x+1)(x−1)+c(x+1) (x+1)(x-1) 2 (x+1)(x-1)2 両辺の分母が一致しているから, 分子も等しくなるように, 係数比較法または数値代入法 でα, b,cの値を定める。 このとき, 分母を払った 整式を考えるから, 分母を0にする値 x=-1,1も代入してよい (下の 検討 参照)。 TRIAHO 解答 両辺に(x+1)(x-1)2 を掛けて得られる等式 -2x2+6=a(x-1)2-6(x+1)(x-1)+c(x+1) もxについての恒等式である。 解答1. (右辺)=a(x2-2x+1)-6(x2-1)+cx+c =(a-b)x2+(-2a+c)x+a+b+c 2011 = OS=dA [S=08 よって 両辺の同じ次数の項の係数は等しいから a-b=-2, -2a+c=0, a+b+c=6 この連立方程式を解いて -2x2+6=(a-b)x2+(-2a+c)x+a+b+c a=1,b=3,c=2 解答 2.① の両辺にx=-1, 0, 1 を代入すると,それぞれ 4=4a, 6=a+b+c, 4=2c この連立方程式を解いて 基本 15 16 a=1,b=3,c=2 このとき, ① の両辺は2次以下の整式であり,異なる3個の x の値に対して成り立つから,①はxについての恒等式であ る。 したがって a=1, b=3, c=2 (分母) ¥0 から (x+1)(x−1)²=0 係数比較法による解答。 「両辺の係数を比較して」 と書いてもよい。 MEG 12-20 数値代入法による解答。 求めたa,b,cの値を① の右辺に代入し、 展開した ものが ① の左辺と一致す ることを確かめてもよい。 検討 分母を0にする値の代入 分母を0にする値x=-1, 1 を代入してよいかどうかが気になるところであるが, これは問題 ない。なぜなら、値を代入した式①は, x=-1, 1でも成り立つ整式の等式だからである。 すなわち、xにどんな値を代入してもよい。 そして,この等式が恒等式となるように係数を定めれば, 両辺を (x+1)(x-1)で割って る分数式も恒等式である。 ただし, これは x = -1, 1 を除いて成り立つ

回答募集中 回答数: 0
数学 高校生

175.3 訂正後の記述に問題はないですかね??

例題165同様、 け平行移動したもの フと対称 フと対称 フと対称 昇する。 軸との交点の (真数) = 1 とすると, x+3=1から x=-1 logeb logea logab=i oga MN=loga Me 軸との交点の x-8-1から log, (4x-8) 基本例題 175 対数の大小比較 次の各組の数の大小を不等号を用いて表せ。説明 (1) 1.5, log35 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 指針 対数の大小比較では,次の対数関数の性質を利用する。 a>1のとき0<b<glogap<logag AUTO 大小一致 関係をいた 0<a<1のとき 0<p<glogp>logaq -------------- に関する箇所 ージで触 CHART 対数の大小 底をそろえて 真数を比較 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し,底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 (3) 4数を正の数と負の数に分けてから比較する。 ・........ 0 また, 10g32, 10g52の比較では, 真数がともに2であるから 底を2にそろえると考えやすい。 解答 0x T (1) 1.5 = 3 3 2 = -log33=log3 32 また (32)=3327>52 & 底3は1より大きく35であるから したがって ( 22210g2=10g222=10g24, 底2は1より大きく, 3 4 <5であるから log33ž>log35 1.5 >log: 5 すなわちょ<0.2 x 1218 同値では10g232 log49= ED ECC =10g23 log23<log24 <log25 すなわち 10g9 <2<log25 (3) 底0.5は1より小さく,3>2>1であるから H logo.53<logo.s2<0 (175 1 log23' すなわち したがって log22² 6-1 log32= log52= 1 <3 <5であるから 0<log23<log25 moke (Fall-colto 13___1 よって 0< log25 で,底2は1より大きく log25 log2 3 2175 (1) log23, log25 はな よいお願 0<log52<log32 logo.53 <logo.52 <logs 2 <logs2 10gag log.pt 0 ye 次の各組の数の大小を不等号を用いて表せ。 10144 p y=logaxのグラフ a>1 q x y 0<a<1 logap OP loga q 底はそろえよ 1 9 <A > 0, B>0ならば A>B⇔A'>B' 底の変換公式。 のように 不等号の向きが変わる。 指針のy=10gaxのグラフ から, 0<a<1のとき α>1 のとき 0<x<110gax<0 x>1⇔10gax>0 0<x<1⇔loga x>0 x>1⇔logax < 0 Op.293 EX113, (2) logo.33, logo.35 (3) logo.54, log24, log34 275 5章 31 対数関数

回答募集中 回答数: 0