学年

教科

質問の種類

数学 高校生

(1)を部分分数分解ではなく、x=2sinθと置いたのですが、それだとダメなんでしょうか?

206 第6章 積分法 基礎問 113 区分求積法 定積分を用いて,次の極限値を求めよ. n2 122 n² + (1) lim n4n2 12 4n2-22 ++・・・+ 4n2 (2) lim +k (2) lim dx 1 = (2+2) 189 207 =1/-10g(2x)+10g(2+1)=1102/11083 1 nk=n+1k →頭に「一」 がつく理由は, 86 ポイント参照。 1 27 n -=lim n→∞nk=n+1k =lim 11 n―00 n k=n+1 k n --log-log2 精講 limΣの形をした極限値を求めるとき, Σ計算が実行できればよい のですが、そうでないときでもある特殊な形をしていれば極限値を k 公式によれば, n 積分の範囲が1→2となる理由を考えてみましょう。区分求積の 求めることができます. →とかわっています. だから, n→∞としたと k それが 「区分求積」といわれる考え方で,その特 殊な形とは YA きの n y=f(x), の範囲がxの範囲ということになります。 n+1sks2n n // ( n+1 nn において, lim 2n -=1, lim lim nk=1" (円) n→∞ n n→∞ n -=2 であることより, 1≦x≦2とな ります。 です. 右図で斜線部分の長方形の面積は1/12 (1) で表 12 nnk-1' 3x n k ポイント せます。 lim 1.2m)=f(x) dr n→∞nk=1 dx よって、21(h)は,図のすべての長方形の総和です。ここで,n(分割 x=1で囲まれた面積に近づくと考えられます。 以上のことから, lim 1 ½ ½ ƒ ( h² ) = f f ( x ) d x n→00 n k=1 ということがわかります. 数) を多くすると曲線より上側にはみでている部分はどんどん小さくなります。 そして最終的にはy=f(x), x軸, 2直線 x = 0, 参考 分割数を倍にすると幅が半 分になるので,この部分だ け小さくなる y=f(x) a b-a bx a+k. n x lim b-a n 12 00 n k=1 n f(a+k.ba) = f(x)dr 区分求積の公式の一般形は下のような形 ですが, 大学入試では上の形でできない ものは出題数が少なく、出題されてもか なりの上位校に限られていますので、ポイントの 形で使えるようになれば十分です. y=f(x) b-a n - a fla+k⋅ b - a). b-a 解 (1)(与式)=lim7_12 non k=1 4n-k² lim 12 1 n→∞nk=1 (k' 4- An 演習問題 113 Elim n+2k の値を求めよ. nwk=1n2+nk+k2 第6章

未解決 回答数: 1
数学 高校生

右側の数の数列の第k項はなぜ(n+1)+(k-1)・-1となるのでしょうか? 初項のn+1はk+1になおさないんですか?? 教えてください( * . .)”

日本 21 第項に 数列の和を求めよ。 を含む数列の 1.(n+1), 2·n, 3.(n-1), ..., (n-1)-3, n.2 443 0000O 基本1.20 重要 32 1 章 方針は基本例題 20同様, 第項ak をんの式で表し, a を計算である。 第n項がn.2 であるからといって,第ん項を k-2としてはいけない。 各項のの左側の数, 右側の数をそれぞれ取り出した数列を考えると の左側の数の数列 1,23 , n-1, n の右側の数の数列 n+1,n, n-1,....., 3,2 第項は →初項n+1, 公差 -1の等差数列 → 第項は (n+1)+(k-1)(-1) これらを掛けたものが,与えられた数列の第k項ak [nとkの式] となる。 Cak の計算では,kに無関係なnのみの式はの前に出す。 また, k=1 この数列の第項は k{(n+1)+(k-1)・(-1)}=-k2+(n+2)k したがって 求める和をSとすると - S=_{-k2+(n+2)}=-k2+(n+2) k n k=1 k=1 k=1 == =-1/n(n+1) (2n+1)+(n+2)/1/27 (n+1) =1/12n(n+1)-(2n+1)+3(n+2)} =1/11n(n+1)(n+5) 別解求める和をSとすると S=1+(1+2)+(1+2+3)+ ...... + (1+2+…………+n) +(1+2+... n +n) -1+2+---+ k)+(+1) k=1 k=1 k(k+1)+n(n+1) = 1 1 1 1 (k² + k) + n(n+1) ++(n+1) k=1 34-7543 =1/21/12m(n+1)(2n+1)+1/21n(n+1)+n(n+1)} <n+2はんに無関係 → 定数とみてΣの前に 出す。 ◆1n(n+1)でくくり { }の中に分数が出て こないようにする。 1+1+1+······ +1+1 2+2+ ...... +2 +2 3+ ...... +3+3 3種々の数 (+) n+n はこれを縦の列 |-12-10 (n+1)((2n+1)+3+6)-1/n(n+1)(n+5) = とに加えたもの

未解決 回答数: 0