数学
高校生

右側の数の数列の第k項はなぜ(n+1)+(k-1)・-1となるのでしょうか?
初項のn+1はk+1になおさないんですか??
教えてください( * . .)”

日本 21 第項に 数列の和を求めよ。 を含む数列の 1.(n+1), 2·n, 3.(n-1), ..., (n-1)-3, n.2 443 0000O 基本1.20 重要 32 1 章 方針は基本例題 20同様, 第項ak をんの式で表し, a を計算である。 第n項がn.2 であるからといって,第ん項を k-2としてはいけない。 各項のの左側の数, 右側の数をそれぞれ取り出した数列を考えると の左側の数の数列 1,23 , n-1, n の右側の数の数列 n+1,n, n-1,....., 3,2 第項は →初項n+1, 公差 -1の等差数列 → 第項は (n+1)+(k-1)(-1) これらを掛けたものが,与えられた数列の第k項ak [nとkの式] となる。 Cak の計算では,kに無関係なnのみの式はの前に出す。 また, k=1 この数列の第項は k{(n+1)+(k-1)・(-1)}=-k2+(n+2)k したがって 求める和をSとすると - S=_{-k2+(n+2)}=-k2+(n+2) k n k=1 k=1 k=1 == =-1/n(n+1) (2n+1)+(n+2)/1/27 (n+1) =1/12n(n+1)-(2n+1)+3(n+2)} =1/11n(n+1)(n+5) 別解求める和をSとすると S=1+(1+2)+(1+2+3)+ ...... + (1+2+…………+n) +(1+2+... n +n) -1+2+---+ k)+(+1) k=1 k=1 k(k+1)+n(n+1) = 1 1 1 1 (k² + k) + n(n+1) ++(n+1) k=1 34-7543 =1/21/12m(n+1)(2n+1)+1/21n(n+1)+n(n+1)} <n+2はんに無関係 → 定数とみてΣの前に 出す。 ◆1n(n+1)でくくり { }の中に分数が出て こないようにする。 1+1+1+······ +1+1 2+2+ ...... +2 +2 3+ ...... +3+3 3種々の数 (+) n+n はこれを縦の列 |-12-10 (n+1)((2n+1)+3+6)-1/n(n+1)(n+5) = とに加えたもの
数b 数列 青チャート

回答

まだ回答がありません。

疑問は解決しましたか?