学年

教科

質問の種類

数学 高校生

(1)の赤字で書いてある式の意味が分かりません。 教えてください🙇‍♀️🙇‍♀️

基本例題 46 次の確率を求めよ。 (1) 1枚の硬貨を4回投げたとき,表が続けて2回以上出る確率 (2) 1枚の硬貨を5回投げたとき,表が続けて2回以上出ることがない確率 p.329 基本事項 CHART & SOLUTION Mamuje 3つ以上の独立な試行 ((1) は4つ (2)は5つの独立な試行) の問題でも, 独立なら 積を計算が適用できる。 また, 「続けて ~回以上出る確率」の問題では,各回の 結果を記号 (○やx) で表して場合分けをすると見通しがよい。 (1) 何回目から表が続けて出るかで場合分けする。 (2) 「~でない」 には 余事象の確率 解答 各回について、 表が出る場合を○, 裏が出る場合をx, どち らが出てもよい場合を△で表す。 (1) 表が2回以上続けて出るの 1回 2回 は、右のような場合である。 よって, 求める確率は (1/2)×1°+(1/2)x 連続して硬貨の表が出る確率 3 + 1 × ( ²2 ) ² = = 1/1/2 3 5 19 +(+4)=32 3 ×12+1 5 よって、求める確率は 19_13 1 32 32 5 OXOX OX (2) 表が2回以上続けて出る 1回 回 3回 4回 5回 のは、右のような場合であ り, その確率は (12/2)x1°+(1/2)×1 ×(1/2)x1+(1/2)+(1/2) × × OOX × × O 〇〇 × O × XXOOD × × 3回 × AOO ○ 4回 A △ AAOOOO AAAO00 O ← 1回目から続けて出る。 ← 2回目から続けて出る。 3回目から続けて出る。 (2) 余事象の確率。 ← 1回目から続けて出る。 ← 2回目から続けて出る。 3回目から続けて出る。 ← 4回目から続けて出る。 ○○×○○は1回目か ら続けて出る場合に含 まれる。

解決済み 回答数: 1
数学 高校生

この 10c4という計算は10c6にはならないんですか?ならないとしたらなぜでしょう。nCr🟰nCn-rと私は習いました。

でで ご購 白チ・ ■基 基本 解説 に な生 コード! 例量 シ [追加] スモ 1 344 例題 準 34 余事象を利用した確率 (順列・組合せ利用) い確率を求めよ。 (2) 赤球4個と白球6個が入っている袋から同時に4個の球を取り出すと (1) 5枚のカード a, b, c, d, e を横1列に並べるとき, baの隣になら 取り出した4個のうち少なくとも2個が赤球である確率を求めよ。 CHART GUIDE 余事象の利用 〜でない, 少なくとも~ には余事象の近道あり 求めるのは, (1) baの隣になる場合 (2) 赤球が 0 個または1個の場合 確率である。 P(A)=1-P(A)=1- 5! 通り (1) 5枚のカードの並べ方は 「bがaの隣にならない」という事象は「bがaの隣になる」 という事象 Aの余事象A である。 aとbのカードをひとまとめにして, 1枚のカードと考える 4通り と、これと残りの3枚との合計4枚の並べ方は 4! 通り そのどの場合に対しても, ひとまとめにした2枚のカードの 並べ方は 2! 通り よって 求める確率は 4!×2! 5! 2・1 5 ·=1-- 本例題10.16.30 313> 5 =210(通り) (2) 球の取り出し方の総数は 10C4= 「少なくとも2個が赤球」 という事象は 球が0個または 1個」という事象 Aの余事象A である。 [1] 白球を4個取り出す場合 6C4=6C2=15 (通り) [2] 赤球を1個,白球を3個取り出す場合 4 C1 X6C3 = 80 (通り) [1],[2] は互いに排反であるから、赤球が0個または1個で ある場合の数は 15+80=95 (通り) 10・9・8・7 4・3・2・1 よって 求める確率は P(A)=1-P(A)=1- 95 23 210 42 の余事象の 0 000 2! 通り 残り3枚 ◆余事象の確率 少なくとも2個赤 | : 4 白 : 0 赤: 3, 白 : 1 赤 2, 白:2 赤: 1:3 赤: 0, 白 : 4 ◆ 余事象の確率 基 本 例題 35 CHART & GUIDE 100 枚の札 札を引く」 ANBは 互いに 余事象 1から100 が3の倍数 100 枚の 象をA, と 求め ここで, A={ ANE TRAINING 34③ (1) A,B,C,D,E,Fの6人が輪の形に並ぶとき, AとBが隣り合わない確率を求 め。 [類 神奈川大 ] (2) 赤玉5個、白玉4個が入っている袋から, 4個の玉を同時に取り出すとき、取り出 した玉の色が2種類である確率を求めよ。 である: したが Le 確率 PC [1] [2] [1] は 分がな したた ANE TRA 「た 1 あ

回答募集中 回答数: 0
数学 高校生

(2)で表の波線のところなんで△じゃなくて○なんですか

基本例題 44 連続して硬貨の表が出る確率 次の確率を求めよ。 1枚の硬貨を4回投げたとき,表が続けて2回以上出る確率 (1) 2 1枚の硬貨を5回投げたとき,表が続けて2回以上出ることがない確率 [センター試験] Ip.298 基本事項1 CHARTI OLUTION 3つ以上の独立な試行 (1) は 4つ (2) は5つの独立な試行)の問題でも, 独立なら積を計算が適用できる。また,「続けて~回以上出る確率」の問題では, 各回の結果を記号 (○やx) で表して場合分けをすると見通しがよい。 (1) 何回目から表が続けて出るかで場合分けする。 (2) 「~でない」には余事象の確率 解答 各回について、表が出る場合を◯, 裏が出る場合をx,どちら が出てもよい場合を△で表す。 (1)表が2回以上続けて出るのは, 1回 2回 3回 右のような場合である。 O 4 よって 求める確率は (1)+(1/2) 1+1.(12)=1/1/24 ² ・1+1・ (2) 表が2箇以上続けて出るの は、右のような場合であり, 1回 2回 3 回 4 回 5回 その確率は (2).P+(1/2)・1+1.(1/2) 2.1 ∙1² ・1 19 5 +1)+(1/2)+(1/2)-1/2 よって 求める確率は 5 1-19_13 32 32 = 32 OX OSX × △ MA X₂ A ③ ム 4 × ₂ Q Q O O x × × ○2× X MA X AO O XX X < AO △ 4回 OO AAA ← 1回目から続けて出る。 2回目から続けて出る。 3回目から続けて出る。 (2) 余事象の確率。 301 ← 1回目から続けて出る。 2回目から続けて出る。 3回目から続けて出る。 4回目から続けて出る。 ○○×○○は1回目か ら続けて出る場合に含 まれる。 PRACTICE ... 44 ③ (1) 1枚のコインを8回投げるとき,表が5回以上続けて出る確率を求めよ。 (2) 1回の試行で事象 A の起こる確率をpとする。この試行を独立に10回行ったと きAが続けて3回以上起こる確率を求めよ。 2章 5 独立な試行・反復試行の確率

回答募集中 回答数: 0
数学 高校生

これのトレーニング両方わかんなあいです!

21:39 のさいころを同時に投げると 同じ目が出ない Efte 偶数の目が少なくとも1つ CHART GUIDE P(A)-1-P(A)を利用する。 余事象の確率 「同じ目が出ない」という事は、同じという。 「偶数の目が少なくとも1つ出る」というW 事象の余事象。 2個のさいころの目の出方は 「同じ目が出ない」という事象は、「同じ目が出る」という 事象Aの余事象 A である。 同じ目が出るのは 6通り よって、求める確率は all P(A)=1-P(A)= (2) 「偶数の目が少なくとも1つ出る」 という事は、「2個と も奇数の目が出る」という事象 Aの余事象A である。 2個とも奇数の目が出るのは よって、求める確率は P(A)=1-P(A)=1-3-2 「少なくとも」が出てきたら、余事象の確率を意識 B : 偶個) C : 個奇 COD my Lecture 上の例題 (2) では,右のように3つの互い に排反な事象 B, C, D を定め,加法定 理でP (BUCUD) を求めてもよい。し かし、上の解答のように, 余事象の確率 を考えた方が計算がらくである。 確率の問題では, 「少なくとも」 というキーワードが出てきたら、余事象の確率を考えるとよい。 少なくとも D : 奇個 A: 奇奇・・・ 2つとも奇数 1つは偶数 624 (2 33 13個のさいころを同時に投げるとき、 次の確率を求めよ。 TRAINING (2) 3つの目の和が4にはならない確率 (1) 奇数の目が少なくとも1つ出る確率

回答募集中 回答数: 0