学年

教科

質問の種類

数学 高校生

(2)は 4分の7π はダメですか?

520 9/04 基本 100 複素数の乗法と回転 0000 (1) z=2-6i とする。 点ぇを, 原点を中心として次の角だけ回転した点をおい 複素数を求めよ。 (4) 6 (1) 一 (2)(1-1)は,点zをどのように移動した点であるか。 指針 a=r(cos 0+isin0) 2 0EE 点は、点を原点を中心としてだけ回転し、 原点からの距離を倍した点である。 (特に,r=1のときは回転移動のみである。) このことを利用する。 (1) 絶対値が1で、偏角がや 掛ける。 (2)1-iを形式で表す。 yo (*) やー とした である複素数をzに かかれて いないから品 CHART 原点を中心とする角0の回転 r(cosO+isin0) を掛ける 回転だけならr=1 キョリは (1) 求める点を表す複素数は 解答 (cos/0/+isin)== (2+1/12 (26) =√3-3√3iti+3 =3+√3+ (1-3√3) i (4) {cos(−)+isin(−)}z=−i(2–6i) (2) (1-i)z=√2 ( =√2 (cos(-7)+isin(-4) 2 よって, 点 (1-izは,点zを =(√3+i) (1-3) =-6-2i ye O 注意 (2) と同様に考え 1-i ・・・原点中心の iz・・・ 原点中心の I 元は? 44 原点を中心として-7 だけ回転 -z・・・ 原点中心の し、原点からの距離を2倍した点である。 であることが導かれ [練習 ① 100 (1) z=2+4i とする。 点z を, 原点を中心として 2 -πだけ回転した 3 素数を求めよ。 (2)次の複素数で表される点は,点2をどのように移動した点である (ア) -1+i 2 √2 Z 1-√3i (ウ)

未解決 回答数: 1
数学 高校生

ここで=を含まないのはなぜですか?

重要 例題 148 三角方程式の解の存在条件 0 の方程式 sino+acos0-2a-1=0を満たす 0 があるような定数a 00000 この値の範 基本145 囲を求めよ。 指針 まず 1種類の三角関数で表す →→ cos0=xとおくと, -1≦x≦1 で、与式は 解答 (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0 ① よって、 求める条件は, 2次方程式 ① が -1≦x≦1の範囲に少なくとも1つの解をも つことと同じである。 次の CHART に従って、考えてみよう。 2次方程式の解と数々の大小 グラフ利用 D, 軸, f(k)に着目 COS=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a1= 0 すなわち x2-ax+2a=0... ① この左辺 f(x) とすると, 求める条件は方程式 f(x)=0 1≦x≦1の範囲に少なくとも1つの解をもつことで ある。 THE 検討 x2ax+2a=0をαにつ いて整理すると x=a(x-2) (0-200-J)-よって, 放物線y=xと これは, 放物線y=f(x) とx軸の共有点について 次の [1] または [2] または [3] が成り立つことと同じである。 [1] 放物線y=f(x)が-1<x<1の範囲で, x軸と異な る2点で交わる, または接する。 このための条件は、 ① の判別式をDとすると D≧0 a(a-8)≥0 D=(-a)2-4・2a=a(a-8) であるから 直線y=a(x-2) の共有 点のx座標が -1≦x≦1の範囲にある 条件を考えてもよい。 解 答編 p.147 を参照。 [1]\ YA よって a≤0, 8≤a ...... 中 <a 軸x=1/2について 1</12 <1から -2<a<2… ③ + 20 1 f(-1)=1+3a>0から a> - 11/13 ④ 3 f(1)=1+α>0 から α>-1 [2] y4 1 ②~⑤の共通範囲を求めて <a≤0 3 + -1 [2] 放物線y=f(x) が-1<x<1の範囲で,x軸とただ 1 1点で交わり,他の1点はx <-1, 1<xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1) (a+1) <0 よって 1 -1<a<- [3] 放物線y=f(x) がx軸とx=-1またはx=1で交わ [=(0) 3 る。 f(-1) = 0 または f(1) = 0 から a=- 1 または α=-1 3 [1] [2] [3] を合わせて -1≤a≤0 ya 00: 1. 100 [参考] [2] [3] をまとめて,f(-1)f(1) ≧0としてもよい。 練習 0 の方程式 2cos20+2ksin0+k-5=0を満たすのがあるような定数々の値の ④ 148 囲を求めよ。

未解決 回答数: 0
数学 高校生

赤で囲っているところはなぜこうなるのですか?

00 本71 C) くる A=Q. 3+GC (00- 30G 針で = 0 基本 例題 31 線分の垂直に関する証明 00000 △ABCの重心を G, 外接円の中心を0とするとき, 次のことを示せ。 OA+OB+OC=OH である点Hをとると,Hは△ABCの垂心である。 (2)(1)の点に対して、3点O,G, Hは一直線上にあり GH=20G [類 山梨大 ] ・基本 25 基本 71 (1)三角形の垂心とは,三角形の各頂点から対辺またはその延長に下ろした垂線の交 点である。 AH 0, BC ≠0, BH = 0, CA ¥0 のとき AHBC, BHICA⇔AHBC=0, BH・CA=0 ...... A であるから, 内積を利用 して, A [(内積)=0] を計算により示す。 Oは△ABCの外心であるから, OA|=|OB|=|OC| も利用。 CHART 線分の垂直 (内積) = 0 を利用 (1) ∠A=90° ∠B=90° としてよ A 直角三角形のときは 解答 い。 このとき,外心Oは辺BC, G CA上にはない。 ① OH = OA+OB+OC から AH OH-OA=OB+OC ゆえに AH・BC =(OB+OC) (OC-OB =|OC|-|OB=0 B C 411 ∠C=90° とする。 このとき,外心は辺AB 上にある (辺AB の中 点)。 1 草 4 位置ベクトル、ベクトルと図形 同様にして60+40 =|OA|-|OC|=0 BC=OC-OB (分割) △ABCの外心0→ OA=OB=OC A0+00 50+1 (数学A) BH・CA=(OA+OC) (OA-OC) また, 1 から AH = OB+OC≠0, BH = OA+OC ¥0 よって, AH ≠0, BC≠0, BH ≠0, CA 0 であるから AH IBC, BHICA すなわち AH⊥BC, BHICA したがって,点Hは△ABCの垂心である。 検討 外心, 重心、心を通る直 線 (この例題の直線 180 OGH) をオイラー線と いう。ただし、正三角形 1 は除く。 (2) OG= OA+O+OC 10日から OH=3OG (1) から 3 3 OA+OB+OC=OH ゆえに GH = OH-OG=2OG よって, 3点0,G, Hは一直線上にあり GH=2OG 練習 右の図のように, △ABCの外側に P Q ③ 31 AP=AB, AQ=AC, ∠PAB= ∠QAC=90° となるように、2点P,Qをとる。 更に、四角形 AQRP が平行四辺形になるように点をと ると,ARIBC であることを証明せよ。 B09 C

回答募集中 回答数: 0
数学 高校生

なぜマーカーのところの確認が必要なのですか??

0 基本例題 16 ベクトルの大きさと最小値 (内積利用) 00000 ベクトルà, について|=√3,161=2,15=√5であるとき (1) 内積 の値を求めよ。立 (2) ベクトル 2a-3 の大きさを求めよ。 頂点とする OAR (3) ベクトルâ+坊の大きさが最小となるように実数の値を定め,そのとき の最小値を求めよ。 [類 西南学院大] ・基本 10 重要 17 基本 32\ =(5) 変形する が現れる。 ★ 大きさの問題は (3) (2) 2a-3を変形して,, の値を代入 。 a + to を変形するとの2次式になるから 2 乗して扱う ① 2次式は基本形 α(t-p)+αに直す CHART はとして扱う =√5から la-61²=598-81 1 章 1章 3 ベクトルの内積 (1) 計 解答 よって (a-b) (a-6)=5 ゆえに la-2a1+1=5 |a|=√3,|6|=2であるから したがって a.b=1 =4|a-12a +91 (2) 12a-36-(2a-36) (2a-36) (一)( 指針 ..... ★の方針。 ベクトルの大きさの式 k+16について, 2乗 3-845+45て内積を作り出 bbb すことは, ベクトルにお ける重要な手法である。 (2a-36)² =4a²-12ab+962 と同じ要領。 =4×(√3)2-12×1+9×22 =36 2a-360であるから |24-36|= 6 (3) la+tb=(a+tb)•(a+tb)=|a|²+2ta b++² 1612² 不 =4t2+2t+3=4t+ (1+1/+17 4 よって,+はt= のとき最小値 をとる。 4 la +t6|≧0 であるから,このとき a +t6 | も最小となる。 √11 したがって, a +66はt=- のとき最小値 を 2 とる。 la+tb 3 11 4 練習 (1) 2つのベクトルd, が,=1, |6|=2, |a+26|=3を満たすとき ともの なす角およびa-26 | の値を求めよ。 ③ 16 [類 神奈川大〕 (2) ベクトル, について, ||=2,|6|=1, a +36|=3とする。 tが実数全体を 動くとき,a+ の最小値はである。 [類 慶応大] p.43 EX 14.15、

未解決 回答数: 1