学年

教科

質問の種類

数学 高校生

この問題のコで、3ページのような式はどこから求めるのでしょうか、、? 5を並行移動したのが4というのは書いてあるので分かるのですが、急にこの式が出てきてわからないです。。 解説お願いします

第4問~第7問は,いずれか3問を選択し, 解答しなさい。 ここで, オ 第7問 (選択問題)(配点 16) 焦点の座標 (p, 0), のときの楕円は,長軸の長さ 短軸の長さ H コ [1] 太郎さんと花子さんは, 2次曲線の性質について話している。 2人の会話文を 0である。 また, に シ のときの双曲線の漸近線は, 直線 y=± だけ平行移動したものである。 サ xをx軸方向 イ エ の解答群 (同じものを繰り返し選んでもよい。 ) 読んで,下の問いに答えよ。 太郎:楕円は、2定点F,F′からの距離の和が一定である点Pの軌跡だよね 花子: 2定点からの距離の差が一定なら双曲線になるよね。 太郎:放物線は、定点Fと,Fを通らない定直線からの 距離が等しい点の軌跡だよね。 花子: 楕円や双曲線の定義と放物線の定義は設定が違うね。 太郎: 定点FとFを通らない定直線からの距離の比が一 定という設定にした場合どうなるか調べてみよう。 (1) F(c, 0), F'(-c, 0) のとき, 2定点F, F' からの距離の和が2aである楕円の 方程式は ・ 62 =1 ただし,62 ア の解答群 a²+c² a²-c² ②√a²+c² (2) 太郎さんと花子さんは定点と定直線からの距離の比が一定という設定にした場 合どうなるかを調べることにした。 すると,そのような設定の場合も2次曲線に なり,比によって, 2次曲線の形が決まることが分かった。 p>0, r0 とする。 点 F (p, 0) からの距離とy軸からの距離の比が1で ある点P(x, y) の軌跡の方程式を求めると、 x+ye- =0 となるから オ のとき、楕円を表し、 カ のとき, 放物線を表し、 キのとき,双曲線を表す。 (数学Ⅱ・数学Bの第7問は次ページに続く。) Þ ① 2p ② p² ③ 2p² ④ (1+m²) ⑤ (1-2) 6 (1-r) 22-1 ⑦ オ キ の解答群(同じものを繰り返し選んでもよい。 ) r>1 ① 0 <r<1 (2) r=1 ク コ の解答群 (同じものを繰り返し選んでもよい。) 2pr 2pr (0 2pr 2pr 1-2 1+2 √1+2 √1-22 (1+m2) p(1-r²) p(1+m²) p(1-r²) 1-2 1+2 ⑥ √1-22 √1+22 サ シ の解答群(同じものを繰り返し選んでもよい。) +1 ② Þ 1-2 1+re (数学Ⅱ・数学B・数学C第7問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

この問題の(2 でなぜ選択肢2が成り立つのか分かりません。照明があるのですがらあまりによって何がわかり、どうして矛盾するのでしょうか、、?、 解説お願いします🙏

例題太郎さんと花子さんは次の証明問題について話している。 二人の会話を読んで下の 問いに答えよ。 問題 直角三角形の斜辺の長さが自然数c, その他の2辺の長さが自然数 a, b であるとき, a, b, c のうち少なくとも1つは5の倍数であることを証明せよ。 花子:直角三角形の3辺の長さといえば,三平方の定理だね。 斜辺の長さが c, そ A の他の2辺の長さがそれぞれα, bだから問題は「自然数 α,b,c が a2+b2=c2 を満たすとき, a, b, c のうち少なくとも1つは5の倍数である」 という性質を証明することだね。 C b B a 太郎:こんな性質があったなんて知らなかったよ。本当に成り立つのかな。 花子: 例えば, a=3, b=4,c=5のときは,cが5の倍数になっているね。 太郎: 他にアのときもこの性質が成り立つよ! どうやらこの性質は成り立つようだね。 じゃ あ、どうやって証明すればいいだろう。 5の倍数であることを証明するから, mを自然数と してα=5mとおいて考えればいいかな。 花子: それだと,その後どうすればいいかわからないよ。こういうときは,授業で習った 「背理法」 を使えばいいんじゃない? 太郎 : 「命題が成り立たないと仮定して, 矛盾を導く」という証明方法だったから,「 A a,b, chi B を満たし,C」と仮定すればいいね。 (1) アに当てはまる最も適当なものを,次の①~③のうちから一つ選べ。 ⑩a=1,6=2,c=√5 ① a=1,6=2,c=3 ② a=8,615,c=17 ③ a=13,6=12,c=5 (2) A B C に当てはまる組み合わせとして最も適当なものを、次の①~③のうちか ら一つ選べ。 イ A B 2+b2=c ⑩ 自然数 ① 自然数 2 ② 自然数 C 自然数 ' +62≠c2 ③無理数 a² +b² c² ²+62=c a2+b2=c a, b, c のうち少なくとも1つは5の倍数でない a, b, c のうち少なくとも1つは5の倍数である a, b, c のいずれも5の倍数でない a, b, c のうち少なくとも1つは5の倍数である 数学- 10

回答募集中 回答数: 0