学年

教科

質問の種類

数学 高校生

(2)の0<1/x<1の式に 問題の式を変形させずに入れてはさみうちの原理を使うことは可能ですか?またできないのであればなぜできないのか教えて欲しいです

=10gsx1 =10g3√x 3x-1 CHART 分母分子に 3x-1 を掛 √xで割る。 (1) 不等式 [3]≦3x < [3x]+1が成り立つ。 解答 x0 のとき,各辺をxで割ると [3x] 1 ここで,3< + から x x (s) [3x] 関西大 基本例題 52 関数の極限 (4) *** 2+3x+x) 基本事項 4. 基本 50 (1) lim x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 ・はさみうちの原理 89 00000 [zais (2) lim(3*+5*)/ 介 p.82 基本事項 基本 21 利用して,まず 針 。 分母分子を 形 することに 込むのもよい。 818 極限が直接求めにくい場合は、 はさみうちの原理 (p.825 ①の2) の利用を考える。 (1) n≦x<n+1 (n は整数) のとき [x]=n すなわち [x]≦x<[x]+1 よって [3x]3x < [3x]+1 この式を利用してf(x)≦ [3x] -≦g(x) x (ただしlimf(x) = limg(x)) となる f(x), g(x) を作り出す。 なお、記号 []はガ →00 ウス記号である。 (2) 底が最大の項でくくり出すと352) 5(/)+112 (2)の極限と {(g)+1} 力な にや 実で学 2 2章 ⑤関数の極限 はさみうちの原理を利用する。x→∞であるから,x>1 すなわち <1と考 えてよい。 の極限を同時に考えていくのは複雑である。そこで, 0 < x 求めにくい極限 不等式利用ではさみうち 203 [3x] [3x] ≤3< 1 + x x x 3-1 [3x] x XC よって ≤3 x x はさみうちの原理 巻 f(x)≦h(x)≦g(x)で limf(x)=limg(x)=α →∞ x→∞ O lim (3-1) =3であるから (2)(3)1 x→∞であるから,x10 < 1/2 <1と考えてよい。 x このとき(23)+1}{(1) +12 <{(1/3)+1} すなわち 1<{(3³)*+1}* <(3)*+1 lim(2/2)+1} =1であるから lim [3x] lim- mil ならばlimh(x)=α =3 x→∞ x→∞ x Anie 3x 底が最大の項でく くり出す (*) A>1のとき,a<b ならば A°<A° 3 +1>1であるか ら, (*) が成り立つ。 -ら、 する。 よってtim(3*+59) - im5(2)' +1-3-1-5 x ・ら から

解決済み 回答数: 1
数学 高校生

上から4行目はなぜこうなるのですか?

基本 例題 29 漸化式と極限 (4) *** 連立形 00000 P1(1, 1), Xn+1 1 = 4 4 xn+n, In+1= 5 3 -xn+ 4 面上の点列 Pn(xn, くことを証明せよ。 指針 点列 P1, P2, yn) がある。 点列 P1, P2, 1 5yn (n=1, 2,......) を満たす平 がある定点に限りなく近づくことを示すには,lim, limyn がと はある定点に限りなく近づ [類 信州大 ] p.36 まとめ, 基本 26 n→∞ もに収束することをいえばよい。 そのためには,2つの数列{x},{y}の漸化式から Xn, yn を求める。 ここでは,まず,2つの漸化式の和をとってみるとよい。 (一般項を求める一般的な方法については、解答の後の注意のようになる。) 811 Xn+1= 1 3 xn+ yn ①, Yn+1= 解答 4 1 x n + 1 − y n 5 Yn ② ①+② から Xn+1+yn+1=Xn+yn P1(1, 1) から x+y=2 x=1, y=1 よって xn+yn=xn-1+yn-1==x+y=2 ゆえに yn=2-xn これを①に代入して整理すると 11 Xn+1= xn+ 20 85 32 変形すると 11 32 Xn+1 xn 31 20 31 32 1 また X1 31 31 32 ゆえに Xn =- 31 31/ (-20 n-1 32 1 よって n→∞ また 32 30 limxn=lim no31 31 limyn=lim (2-x)=2- 1+0=and -20))} = 32 Q=-- a+ 32 31 数列{X-3は 1 |Xn+1= xn+ 特性方程式 11 20 8-5 の解 a= 公比 31 ラ 11 31 - 20 818 n→∞ 31 31 比数列。 y=2xから。 したがって, 点列 P1, P2, ...... は定点 31' 31 3230 に限りなく近づく。 一般に, x=a, y=b, xn+1=pxn+gyn, yn+1=rxn+syn (pqrs≠0) で定められる {x}, {yn} の一般項を求めるには, 次の方法がある。 方法1 Xn+1+αyn+1=β(x+αyn)としてα, β の値を定め, 等比数列{xn+yn} 用する。

未解決 回答数: 1