学年

教科

質問の種類

数学 高校生

このような問題の場合って毎回aの値は=0 orゼロ以上orゼロ以下のように計算すればいいのですか? それとも問題文から読み取って場合によってaの範囲を変えて計算するのですか? 教えていただきたいです

DOO 移動し 重要 例題 56 1次関数の決定(2)の調 00000 関数 y=ax-a+3 (0≦x≦2) の値域が1≦y≦b であるとき、定数a,b の 値を求めよ。 基本 事項 5 CHART & THINKING HO (株) グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数αの符号がわからないから,グラフが右上 がりか,右下がりかもわからない。このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a < 0 のときグラフは右下がり。 a>0,a=0,a<0 の各場合において値域を求め, それが 1≦y≦b と一致する条件から a,bの連立方程式を作り,解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, [1] α > 0 のとき x=2のときqy=a+3 Te& [1] YA +3 この関数はxの値が増加するとyの値も増加するから, x=2で最大値 6, x=0 で最小値1をとる。 101 3章 7 関数とグラフ よって mat=1,mat=1 だと、上記の通りに これを解いて a=2, b=58=(8) Vだと、上記の通りにM1 -a+3 ならないが、直線なので ア 10 2 x これは α0 を満たす。ス のグラフ =x2の係 て,別解 称移動さ えて求め m [2] a=0 のとき THE 不等号がそのまま 反映される。 この関数は y = 3 a=0 の場合を忘れない ように。 8+(-x)=fa このとき,値域は y=3であり, 1≦y≦b に適さない。 [3] a < 0 のとき ← 定数関数 131 YA この関数はxの値が増加するとyの値は減少するから, x=0で最大値 6, x=2で最小値1をとる。 -a+3 b よって -a+3=b, a+3=1 これを解いて la+3 a=-2,6=5 +(8-x)=0 2 これは α <0 を満たす。 (0-x)= [1]~[3]から (a,b)=(2,5), (-2,5

解決済み 回答数: 1
数学 高校生

どうしてS(2n)でやるんですか?

63 32 部分和 San-1 S2 を考える ののののの 1 無限級数 1 1 + +.. ****** 32 22 33 の和を求めよ。 基本31 2章 無限級数 国の和であ ように してもより →0, のとき CHART & THINKING 無限級数 まず部分和 S 基本例題31と同じと考えて,第n項を (1) とし,和Sを 右のように求めてはいけない。 ここでは,( )がついていないから, やはり, S を求めて n→∞の方針で解く。 ところが, S は奇 数項までと偶数項までで異なるから, nの式では1通りに表されない。 S=- 12 1 よって, S2n-1, S2 の場合に分けて調べる。 S21-1 は S27 を用いて表すことを考えよう。 [1] limS2-1 = limSzn = S ならば limS=S →8 [2] limS2-1≠lim Szn ならば {S} は発散 8818 注意 無限級数の計算では、勝手に()でくくったり, 項の順序を変えてはならない! この無限級数の第n項までの部分和を S とする。 S2n=1- Sz.-1-1+1-3+1-31+ 2 32 22 = (1 + 1/2 + 1/2 + ----+ 2 1 -1) 22 ・+ 1 3 + + 32 +......+ 33 3n 1 1-3 1 1 2-1 3" ←部分和 (有限個の和) な ら()でくくってよい。 初項1,公比の等比数 列の和。 2 1 1 2 数列の和。 1 1 2% 2 3" 2 よって lim S2n=2- 1 3 n→∞ 2 2 また lim S27-1=lim(S2n+3)= lim S2n+lim n→∞ n→∞ 718 lim Szn=lim S2n-1 →∞ 3 2 であるから, 求める和は この例題の無限級数 α+b+a2+b+....+an+bn+ の和は,無限級数 inf. =0,lim/ -=0 = lim S2nS2n-1=S2n-azn n-00 - S.-(-3) =S2n- {San} も {3} も収束する。 (a+b)+(az+bz)+…+(an+6m)+・・・・・・ の和と同じ結果になる。 結果が異なる場合に ついては, PRACTICE 32 の解答編の inf. や EXERCISES 30 を参照。 PRACTICE 323 2 2 lim 1-∞0 271 ... B 3" n→∞ 2 3|2 七級数の収束薬品 または[r]<1 和は を確認する。 次の無限級数の和を求めよ。 (12/2/+/+//+//+/12/23+1/2/3+..... (2) 1++++++++ 3 4 9 8 27 +...... 864A 出

解決済み 回答数: 1
数学 高校生

二次関数のグラフです 下の方に青でマークしてるところが、なぜそうなるのか教えてくださいm(*_ _)m

ようにして 8 8-2 係数 とき、い 本 例題 52 2次関数の係数の符号とグラフ 2次関数y=ax2+bx+c のグラフが右の図で与えら れているとき、次の値の符号を調べよ。 (1) a (2) b (4) b2-4ac (5) a-b+c (3)c 00000 が x CHART & THINKING D.91 基本事項 4. 基本 51 グラフから情報を読み取る 式の値は直接求めることができない。 「上に凸か,下に凸か」, 「軸や頂点の位置」, 「軸との交点の位置」 などに着目して, 式の値の符号を調べよう。 カ 上に凸か, y 頂点のy座標は? 下に凸か? 3章 x=-1 における 10 y座標は? 7 x Ly軸との交点の 位置は? |軸の 位置は? 関数とグラフ ax+bx+c=a(x+2)-B-Aac 4a b2-4ac よって, 放物線y=ax2+bx+c の軸は直線x= 頂点の座標は b 2a' 4a が る。 また, x=-1のとき ax2+bx+c =(x+1/x)+c a b E,y軸との交点のy座標はcal{(x+2)-(2)}+c y=a(-1)2+6(-1)+c=a-b+c =dx+20 \2 b 2a = a(x+2)-a (20) + c |= a(x+2)²= \2 62-4ac 4a (1) グラフは上に凸の放物線であるから a <0 b <0 2a (2) 軸がx<0 の部分にあるから (1)より, a<0 であるから (3)グラフがy軸の負の部分と交わるから (4)頂点のy座標が正であるから b<0 c<0 b2-4ac0 4a (1)より, a<0 であるから (b2-4ac)<0 すなわち b2-4ac > 0 (5) a-b+c は, x=-1 におけるyの値である。 グラフから、x=-1 のとき すなわち a-b+c>0 y>0 F b ・>0 2a ←放物線y=ax2+bx+c について, x軸と異なる2点で交 わる 62-4ac > 0 PRACTICE 52Ⓡ 右の図のような2次関数y=ax2+bx+c のグラフについて 次の値の正, 0,負を判定せよ。 (1) a (4)62-4ac (2) b (3)c (5)a+b+c (6) a-b+c が成り立つ (p.139 以降 を参照)。 x

解決済み 回答数: 1
数学 高校生

(2)の解説の6<2a+5≦7の7は、一体どこから来たんですか?

60 ③24 基本 例題 33 1次不等式の整数解 不定! (1) 不等式 6x+8(6-x) > 7 を満たす2桁の自然数xの個数を求めよ。 (2)不等式 5(x-1)<2(2x+α) を満たすxのうちで,最大の整数が6であ るとき, 定数αの値の範囲を求めよ。 基本 29,32 CHART & THINKING 1次不等式の整数解 数直線を利用 まずは, 与えられた不等式を解く。 (1) 2桁の自然数x≧10 これと不等式の解を合わせて、条件を満たす整数xの値の 範囲を10≦x≦n の形に表す。 この不等式を満たす整数の個数は? (2)不等式の解はx<Aの形となる。 数直線上で A の値を変化させ, x<Aを満たす最大 の整数が6となるのはAがどのような値の範囲にあるかを 考えよう。 → x=6 は x < A を満たすが, x=7 は x<A を満たさないことが条件となる。 6 A 7 x 解答 (1) 6x+8(6-x) > 7 から 41 ゆえに x< -=20.5 xは2桁の自然数であるから 10≦x≦20 求める自然数の個数は 20-10+1=11 (個) (2)5(x-1)<2(2x+α) から 2x>-41 2桁 21 ← 10 11 20 41 2 x<2a+5 ••••.. ① ①を満たすxのうちで最大の整数が6となるのは 6<2a+5≦7 ←展開して整理。 不等号の向きが変わる。 解の吟味。 x のときである。 ① ゆえに 1<2a≦2 6 2a+57 x よって1/12 <as1 ①を満たす最大の整数 展開して整理。 6<2a+5<7 とか ま 62a+5≦7 などとし ないように。 等号の有 無に注意する。 ←a=1のとき、不等式は <7 で,条件を満たす。 本 a=1/2 のとき,不等式は <6 で、条件を満たさ ない。

解決済み 回答数: 1
数学 高校生

解答のところでなぜy軸との交点のy座標はcであるのかがわかりません。 教えてください🙏

基本例題 52 2次関数の係数の符号とグラフ 2次関数y=ax2+bx+c のグラフが右の図で与えら れているとき,次の値の符号を調べよ。 00000 y (1) a (2) b (4) 62-4ac (5) a-b+c CHART & THINKING グラフから情報を読み取る (3)c p.91 基本事項 4.基本51 上に凸か, 頂点の座標は? 式の値は直接求めることができない。 「上に凸か,下に凸か」, 「軸や頂点の位置」, 軸との交点の位置」 などに着目して、 式の値の符号を調べよう。 下に凸か? 3章 x=-1 における 10 座標は? 7 x 軸との交点の 位置は ? 軸の 位置は? 解答 関数とグラフ ax2+bx+c=ax+ b 2a 62-4ac ax2+bx+c 4a よって, 放物線y=ax2+bx+c の軸は直線x=- b2-4ac 頂点の座標は 4a る。 b =a(x²+x)+c 2a" y軸との交点のy座標はcであ ={(x+2 b2 b +c 2a) =(x+2)- b +c 2a また, x=-1のとき y=a(-1)2+6(-1)+c=a-b+c =a(x+1)² 62 62-4ac 2a 4a (1) グラフは上に凸の放物線であるから a <0 b b (2) 軸が x<0 の部分にあるから <0 2a ->0 2a (1)より, a < 0 であるから (3) グラフがy軸の負の部分と交わるから (4)頂点のy座標が正であるから b<0 c<0 b2-4ac >0 4a (1)より, a<0 であるから -(b2-4ac)<0 すなわち b2-4ac > 0 (5) a-b+c は,x=-1 におけるyの値である。 ←放物線y=ax2+bx+c について, x軸と異なる2点で交 わる⇔ b2-4ac > 0 が成り立つ (p.139 以降 を参照)。 グラフから,x=1のとき y>0 すなわち a-b+c>0 PRACTICE 52Ⓡ ③ 右の図のような2次関数y=ax2+bx+c のグラフについて, 次の値の正。 0負を判定せよ。 (1) a (4)62-4ac (2) 6 (3)c (5) a+b+c (6) a-b+c 0 1

解決済み 回答数: 1
数学 高校生

左下の 3C2 ってなんですか?

33 重要 例題 50 平面上の点の 右の図のように,東西に4本, 南北に4本の道路が ある。地点Aから出発した人が最短の道順を通って 地点Bへ向かう。このとき,途中で地点を通る確 率を求めよ。 ただし、各交差点で,東に行くか, 北 に行くかは等確率とし,一方しか行けないときは確 1でその方向に行くものとする。 CHART & THINKING A 求める確率を A→P→Bの経路の総数 ABの経路の総数 から、 4C3×1 6C3 とするのは誤り! この理由を考えてみよう。 は,どの最短の道順も同様に確からしい場合の確率で,本間 は道順によって確率が異なるから, A→Bの経路は同様に 確からしくない。例えば, A 1/2×12×1/2×1/2×1×1=1/6 PI1Bの確率は A 1/2×1/2×1/2×11×1=1/ 1PBの確率は A よって、Pを通る道順を, 通る点で分けたらよいことがわかるが, どの点をとればよいだろ うか? 解答 右の図のように、地点 C, C', P' をとる。 Pを通る道順には次の2つの場合があり,これらは互いに 排反である。 [1] 道順 AC'′ →C→P→B この確率は1/2×1/2×1/2×1×1×1=1/ 1 x1x1 8 [2] 道順AP'′ →P→B (9) この確率は 3 16 よって、求める確率は1/2+3 5 8 16 16 P' P A CC CPは1通りの道順であ ることに注意。 進む。 [1] [2]○○○と進む。 ○には2個と1個 が入る。

解決済み 回答数: 1