学年

教科

質問の種類

数学 高校生

クケなぜチェバの定理使えないんですか?

SELECT 90 Eを,4点A, ずつ選べ。また SELECT 60 である。 AB の なる。 (配点 15 美 57 6 O 56 右の図のように, AB = 9, BC=10, CA=6の△ABCがあり ∠Aの二等分線と辺BCの交点をDとする。 点Aを通り点Dで辺 BCに接する円と, 2 辺AB, AC との交点をそれぞれE, F とする。 , E, FAと異なる点とする。 また, 線分 AD と EF の交 点をGとし, 直線BGと辺ACの交点をHとする。 御 (1) BD= BE = ウ である。 (2) EF:BC= AH また, HC 難易度★★★ であるから アであり, BD イ BE が成り立つから, I : AB となるから, EF= 目標解答時間 である。 (4) △ADE~ △ テ (△AEDの面積) (△DHCの面積) である。 ーゲ 1 については, 当てはまるものを、次の⑩~⑥のうちから一つ選べ。 AC ④ CD 3 AF ② AE ① AD 65 DF (3) △ABCの面積をSとおくと (△AEDの面積) = S (△DHCの面積) [オカ] である。 [ソタ テ については,当てはまるものを、 ② EG (0) CD ① DF 12分 チツ より, AD=トナ] である。ふ B 次の⑩~②のうちから一つ選べ。 El SELECT SELECT 90 60 DEN PAT シ S スセッ回る巻 MEGALA IN OBAQAD ⑥ EG D 8200A90 CE H (配点20) <公式・解法集 26 54 56 58 60 図形の性質 三角形の相似の利用 分 AD は ∠Aの二等分線であるから A BD:DC=AB:AC=9:6=3:2 したがって BD=1 = 10-3-6 ]1 方べきの定理により BD" BE・BA で, BA9 であるから B BD=9BE が成り立つので BE= BD²=6=4 9 9 接線と弦のつくる角の定理により ∠EDB=∠DAE ・・・・・・① 線分 AD は ∠Aの二等分線であるから ∠DAE=∠DAF ...... ② また、同じ弧に対する円周角より |∠DAF=∠DEF ...... ③ ① ② ③ より |∠EDB=∠DEF 錯角が等しいので EF // BC したがって AAEFo AABC AD よって EF: BC = AE: AB (②) |ここで, AE=AB-BE=9-4=5 より EF:10=59 EF= _105_ 9 AG: GD = AE: EB = 5:4 して 5.3 CH 4 5 HA よって 50 また, △ADCと直線BHにおいて, メネラウスの定理により AG DBCH=1 GD BC HA ここで, EF // BC より AH_3 HC <Point -=1 J2 」 2 2 G D A 角の二等分線と比 △ABCにおいて,∠Aの二等分 線と辺BCの交点をDとすると BD:DC = AB:AC C B 方べきの定理 下の図で 12 PA-PB=PT" (PTは接線, Tは接点) HE D C CA P• C 接線と弦のつくる角の定理 下の図で T ∠ACB=∠BAT ( AT は接線) -T D △AEF と △ABCにおいて <EAF =∠BAC (共通) また、平行線の同位角より ∠AEF=∠ABC B 2組の角がそれぞれ等しいの AAEF có AABC D

未解決 回答数: 2
数学 高校生

写真の質問に答えてください!

標 例題 138 正弦・余弦定理を利用した測量(2) 1km離れた海上の2地点A, B から,同じ山 頂Cを見たところ, A の東の方向, 見上げた 角が30℃, Bの北東の方向, 見上げた角が45° の位置に見えた。この山の高さ CD を求めよ。 ただし,地点DはCの真下にあり, 3点A,B, GUIDE B D は同じ水平面上にあるものとする。 また,62.45 とする。 CHART 1 CD=hkm として, AD, BD をんで表す。 解答 山の高さ CD をhkm とする。 △ACD は,30°60°90°の直角 三角形であるから 測量の問題 図をかいて、線分や角を三角形の辺や角としてとらえる [2] ∠ADB の大きさを求める。 ・・「Aの東, B の北東の方向に山頂Cが見えた」という条件に注目。 3 △ABD に注目して余弦定理を利用し, h を求める。 A 30° √3hkm h²= 12=(√3h²h²-2√3hhcos45° ん>0 であるから 1km AD=√3hkm また, ABCD は, 45° 45°90° の直角二等辺三角形であるから BD=hkm 次に,地点Dは,A の東の方向かつBの北東の方向にあるから ∠ADB=45° △ABD において, 余弦定理により A B 45° 45 h km すなわち 1=3h²h²-√6h² よって (4-√6) h²=1 4+√6 ゆえに 1km hkm D 4+2.45 4-√6 (4-√6) (4+√6) 16-6 =0.645 -計算は電卓による h=√0.645=0.8031・・・ 答約 803m 30° | TRAINING 138③ 同一水平面上に3地点 A, B, C があって, C には塔PC が 立っている。 AB=80m で,∠PAC=30℃, ∠PAB=75°,∠PBA=60° であった。 塔の高さ PC を求めよ。 ただし, 答えは根号がついたままでよい。 45 ←CD: AC: AD =1:2:√3 ← BD : CD : BC =1:1:2 <cos 45º = --4 分母の有理化 分母・分子に4+√6を 掛ける。 A 30° 17.5 180m 60° B 10 例題 139 正四面体の切り口の三角 1辺の長さが4である正四面体 AB CDの中点をMとし,∠AMB=6 cose の値を求めよ。 (②2) ABM の面積を求めよ。 CHART 空間図形の問題 平面図形(断面図)を取り出す 線分や角は三角形の辺や角としてとらえる 平面図形 (ここでは△ABM) を取り出すと、 例題131と同じ方針で考えることができ (2) かくれた条件 sin'0+cos0=1 から sine の値を求め、面積の公式に代入する。 (1) COSO を △ABM の1つの角の余弦ととらえ、 余弦定理を利用する。 GUIDE (1) ACM, ABCM は, 内角が30%, 60, 90°の直角三角形であるから AM=M=√3CM=√3.2=2√/3 △ADM において, 余弦定理により で Cose (2√3)² + (2√3)²-4² 2.2√3-2√3 65 15 (2) 1から Dit Dは sin20=1-cos'0=1- sin9>0であるから sin よって、ABの面積は AABM -1-( - ) -- on thi 8 24 BM sine= 1 辺 A(B) 30° 30 4 <60° 60% M 14√). 4 2/2 の長さを求めよ。 (2) ADF とおくとき, cosd の値を求めよ。 AAEDの面積を求めよ。 D CM: AC:. -CM: BC -1:2:√3 B 2. sin'+co 6450 RAINING 139 1辺の長さが3である正四面体 ABCD において、C上に点Eを となるようにとる。 (L)【緑

解決済み 回答数: 1