学年

教科

質問の種類

数学 高校生

(2)の解答で、でなぜこの場合は、精講②『軸の動きうる範囲』と③『頂点のy座標の符号』は書かなくていいのですか? 教えてください。

15 解の配置 2次方程式 2-2ax+4=0 が次の条件をみたすようなαの範 囲をそれぞれ定めよ. (1) 2解がともに1より大きい. _(2) 1つの解が1より大きく, 他の解が1より小さい。 (3) 2解がともに0と3の間にある. (4) 2解が0と2の間と24の間に1つずつある. 注 「異なる2解」 とかいていないときは重解の場合も含めて考えます. (2) f(x)=0 の1つの解が1より大きく、他の解 左 が1より小さいとき, y=f(x) のグラフは右図. y=f(x) IC 5 よって, f(1)=5-2a< 0 a> 注 この場合、精講②③は不要です。 (3) f(x)=0の2解がともに0と3の間にあると き, y=f(x) のグラフは右図. y=f(x) よって、 次の連立不等式が成立する. [f(0)=4>0 <精講① O 3 X f(3)=13-6a>0 <精講① 4-a2 0<a <3 <精講② 解の条件を使って係数の関係式を求めるときは, グラフを利用しま す。その際,グラフの次の部分に着目して解答をつくっていきます。 4-a²≤0 <精講③ 13 ② 軸の動きうる範囲 ①あるxの値に対するyの値の符号 ③頂点の座標 (または、判別式) の符号 のように, 方程式の解を空の よって,a< 12 かつ0<a<3 かつ a≦-2 または 2≦a」 下図の数直線より,2≦a< 20 13

解決済み 回答数: 1
数学 高校生

F1a-160 (3)についてです。 私は2枚目の写真のようにCを用いて考えたのですが、私のだとただB班が入る場所を決めただけだからダメなのですか? 3箇所選んでその中に入る人の並び方も考えないといけないからPを使ったのですか? どなたかすみませんがよろしくお願いします🙇‍♀️

第6章 場合の数 例題 160 条件のついた並び方(1) か **** A班4人,B班3人の合計7人が1列に並ぶ。次の並び方は何通りある (1) 並び方の総数 (2) B班3人が隣り合う イタ A か・ B班3人ともが隣り合わない 考え方 (2) B班3人が隣り合うので,まずは, B班3人をひ とまとまりとして考えて, 5個の順列を求める. 次に,B班3人の並び方について考える。 解答 5個の順列 BBBAAAA B B B 3個の順列 (3) 右の図のように, A班4人を並べて、 次にその間と両 端の5箇所(①~⑤) から, B班3人が1人ずつ入る 3箇所を決める順列と考える. (1)7人が1列に並ぶ順列だから, P7=7!=7・6・5・4・3・2・1=5040 (通り) (2) B班3人をひとまとまりにして A班4人との5個の順列として考えると, 5!=5・4・3・2・1=120 (通り) B班3人の並び方は,3!=6(通り) よって、B班3人が隣り合う並び方は, 120×6=720 (通り) (3) A班 4人の並び方は, 4!=4・3・2・1=24(通り) A班4人の間と両端の5箇所のうち3箇所にB班 3 人が1人ずつ入ればよい. AAAA BBB まずは、ひとまとま て考える。 S.I.0 積の法則 A班4人が隣り合う ことはあっても, B したがって, 入る方法は, 5個から3個取る順列だか 班3人が隣り合うこ (05, らっ 5P3=5・4・3=60 (通り) よって, 24×60=1440 (通り) Tocus 「隣り合う」 は 「ひとまとまり」に 「隣り合わない」 は 「後まわし」にして考える とはない. 積の法則 [考え]

解決済み 回答数: 1
数学 高校生

F1a-158 ①(2)の解説のピンクの蛍光ペンを引いたところがわかりません。 ②①の質問とかぶるところがあるかもしれないのですが、約数の個数の求め方は公式を覚えてるので解けるのですが、なぜ素因数分解したらそれを元に総和が分かって、左の表のようになるのですか?表がよく分か... 続きを読む

例題 158 約数の個数 男の金 **** (1)(a1+az)(bi+b2+ba+ba) (ci+C2+ca) を展開すると,異なる項は何 個できるか. X2200の約数の個数とその総和を求めよ.また,約数の中で偶数は何 個あるか ただし, 約数はすべて正とする. 考え方 (1) (α)+α2)(b)+b2+bs+ba) (Ci+C2+c3) たとえば, (a1+a2)(by+b2+bs+bs) を展開してできる arb に対して, a*bi (Cr+C2+cs) の展開における項の個数は3個である (a1+az)(bi+b2+bg+b4) を展開するとき, abı のような項がいくつできるか考 えるとよい. (2) 1か2か2か23 × 1か5か52 であるが, (1+2+2+2°)(1+5+5)を展開すると、 1×1, 1×5, ②×14×1, 8×1, ②×54×5,8×5, 1×25, 2×254×25,8×25 がすべて一度ずつ現れる.したがって,約数の総和は,次のようになる。 (1+2+4+8)×1+(1+2+4+8)×5+ (1+2+4+8)×25 =(1 + 2 + 4 + 8 ) ( 1 +5 +25) 200=2×52 より,約数が偶数になるのは,1以外の23の約数を含むときであるか ら、2か22か2を含む約数の個数を求めればよい. a1, a2の2通り bi, 62, 63, b4 の4通り 例題 60 求め 「考え方 解答 (1) (a1+a2)(b1+b2+63+64) を展開してできる項 の個数は、2×4(個)である。 〇のこと のこと また, (a1+a2)(61+62+63+64) の1つの項 ab に対して, てかける 日数は序数+a*bi(c+cz+C3)010 off よって, 求める項の個数は, (2)200 を素因数分解すると, (3+1)×(2+1)=12 の C1, C2 C3の3通り の展開における項の個数は3個である. 2×4×3=24 (個) 200=23×52 積の法則 より、約数の個数は, 12個 1 21 22 23 また、約数の総和は, 11.1 (1+2+2+2)(1+5+52)=465 100 2.122-1 23-1 51 15 251 2% 51 2°•5' また, 偶数の約数は, 2か22か2を含むもの だから, ・5,52, 3×2+1=9 かけたやっ 52 1.52 2.52 2.52 23•52 偶数になるのは, 1 以外の 2'の約数を含むとき より, 偶数の約数の個数は, 9個 Focus 合 約数の個数は,素因数分解し、 積の法則を利用する 数個数は,素因数分解し、積の法則を利用する 用 a × 6° Xc" の約数の個数は,(n+1)(g+1)(n+1)個 (a,b,cは素数)

解決済み 回答数: 1
数学 高校生

F1a-157 (2)なのですが、なぜ100円玉一枚をを50円玉二枚として考えるのですか? 100円玉そのままではいけない理由が知りたいです どなたかすみませんがよろしくお願いします🙇‍♀️

Think 157 支払える金額の種類 **** 硬貨の枚数が次の場合のとき、支払える金額は何通りあるか。 ただし 「支払い」とは,使わない硬貨があってもよいものとし、金額が1円以上の 場合とする中、 1100円硬貨が3枚, 50円硬貨が1枚, 10円硬貨が2枚 100円硬貨が4枚, 50円硬貨が2枚, 10円硬貨が3枚 (2)100円硬貨1枚の場合と、50円硬貨2枚の場合は、同じ「100円」を表す. 「50円硬貨2枚」 を 「100円硬貨1枚」と考えてしまうと,「50円」のように表せな い金額がでてしまうので、大きい金額の硬貨 「100円硬貨4枚」を小さい金額の硬 「50円硬貨8枚」と考えて,全部で 「50円硬貨 10枚,10円硬貨3枚」とする。 このように考えると,「3種類の硬貨の使い方」 で表現できる「支払える金額」は一 通りに定まる. 考え方 それぞれの硬貨の使い方が何通りあるか求め,積の法則を利用する 「解答 10円硬貨 2枚の使い方は, 0~2枚の 4×2×3=24 (通り) (1)100円硬貨3枚の使い方は, 0~3枚の4通り 50円硬貨1枚の使い方は, 0, 1枚の 異なる硬貨で,同じ 2通り 金額を表すことがで 3通り 川は50円(枚 やけど(2)は2枚 よって、「支払い」は1円以上より,求める総数は, 24-1=23 (通り) きないので,それぞ れの場合を考える。 積の法則 525 50円硬貨 10 枚の使い方は, 0~10枚の11通り 10円硬貨3枚の使い方は, 0~3枚の 4通り 11×4=44 (通り) より (あるから、(00円) 100円硬貨1枚」 と 「50円硬貨2枚」のとき同じ のverがある。 金額 「100円」 を表すので、 「100円硬貨4枚」を「50円 硬貨8枚」と考える。 どの硬貨も使わない 「0円」の場合を引く. 30 もとの50円硬貨 2 枚と,100円硬貨を 50円硬貨とした8 枚の計10枚 第6章 よって,「支払い」は1円以上より, 求める総数は,積の法則 44-1=43 (通り) 「0円」の場合を引く. Focus 一般に, 「100円1枚は50円2枚」 のように小さい金額の硬貨とし て考えると, 支払える金額は一通りに表せる 謎》例題 157 (1) では 「10円硬貨が2枚」 なので、30円や90円など、表すことができない金 額がある.

解決済み 回答数: 1