学年

教科

質問の種類

数学 高校生

例題16 (2)の問題です。因数分解です。 2枚目自分で解いたものなのですがなぜこの答えではダメなのか、どこで間違えているのか教えて欲しいです。 よろしくお願いいたします。

基本 例題 16 因数分解 (対称式・交代式 ) 次の式を因数分解せよ。 (1) a(b+c)2+b(c+a)+c(a+b)-4abc ② x(y2-22)+y(z2-x2)+2(x²-y2) 20 CHART & SOLUTION 対称式・交代式の因数分解 1つの文字について降べきの順に整理する どの文字についても次数は同じ。 どれか1つの文字に着目して整理する。 (1) a²+a+ (2) x²+x+ 解答 (1) α(b+c)2+b(c+a)+c(a+b)2-4abc =a(b+c)2+b(c2+2ca+α)+c(a²+2ab+62)-4abc =(b+c)a²+{(b+c)2+2bc+2bc-4bc}a+bc2+b2c =(b+c)a²+(b+c)2a+bc(b+c) =(b+c){a²+(b+c)a+bc} =(b+c)(a+b)(a+c) =(a+b)(b+c)(c+α) (2)x(y2-22)+y(z2-x2)+2(x²-y²) 1=(-y+z)x2+(y2-22)x+yz-yz L =-(y-z)x2+(y+z)(y-z)x-yz(y-z) =-(y-z){x2-(y+z)x+yz}] =-y-z)(x-y) (x-z) =(x-y) (y-z)(z-x) INFORMATION 00000 [(2) 鹿児島大 ] 33 基本 14.15 1章 aについて降べきの順に整 理する。 ●aka+● ← (b+c) が共通因数。 これを答えとし 輪環の順に整理。 について降べきの順に整 理する。 ●x²+x+● (y-z) が共通因数。 これを答えとしてもよい。 輪環の順に整理。 3つの文字についての式は,なるべく輪環の順に書くようにすると 防ぐことができる。 因数分解

解決済み 回答数: 1
数学 高校生

y=x^2+1とy=√(x-1)はこの式単体で見たら、後者の式はyの値に対してxの値がただ一つ決まるという考えで作っているかどうかの見分けがつきません… だからf(x)の逆関数はf^(-1)(x)と表すのでしょうか?

26 第1章 いろいろな関数 逆関数の求め方 SOUT US RO y=x2+1(x≧0) の逆関数を式で表してみましょう. 元の関数はyがェの で表されていますが、 逆にxをの式で書き表します。「ただ1つ に決まらなければなりません。 r2=y-1 xに何の条件もついていなければ x=±√y-1 となり,xの値が1つに決 まらないのですが,x≧0という条件があることにより,た」 カッ 間に2を 5が出力 つに決まるので、 ます。 x=vy-1 とxの値を1つに決めることができます. これで,「y を入力するとェが出力 される」という式ができました.ただ, 通常の関数は 「入力を x, 出力を で書き表すので,体裁を整えるためにxとyを入れ替えます。 帰国 これが,y=x2+1 の逆関数となります. 1 逆関数と元の関数は同じものの裏表ですから、 元の関数のグラフのと のラベルを付け替えれば,それがそのまま逆関数のグラフになります.「定義 域」と「値域」もそっくりそのままひっくり返ります. =2+1/4y=vz-1 +3 値域: y y≥1 逆関数 定義域: IC x≧1 xとyの関係が 入れ替わる の付 0x IC Oy y 定義域:x≧0 「つを 値域 : y≧0 ただ,もちろんx軸が縦軸, u軸が横軸だと何か 必ずただ=x2+1

解決済み 回答数: 1
数学 高校生

なぜ青線部のことがいえるのですか?

18 第1章 数と式 標 問 6 式の値 ( 分数式) 19 解答 (1) 2x-y+z=0, x+2y+8z=0より (東亜大) x=-2z,y=-3z よって, ry+y+zx_(-2z)(-3z)+(-3zz+z(-2z) x²+ y²+z2 (-2z)+(-3z)2+22 分数式を1つの文字で表す 2式を連立して, x,yについ て解く (1) 実数x, y, はいずれも0でなく, 2x-y+z=0とx+2y+8z=0 の xy+yz+zx 両方を満たすとき x² + y²+z² の値を求めよ. ytz_z+x+y=mとするときの値を求めよ. (2) 2 I y また,(1+2) (1+72)(1+/-) の値を求めよ. (6-3-2)z2 1 = (東海大) (4+9+1)2214 (2) I 精講 (1) 文字が3つありますが 解法のプロセス 2x-y+z=0, x+2y+8z=0 を利用して, 1つの文字で残り2つの文字を表現 (1) 2c-y+z=0, x+2y+8z=0 xy+yz+zx し、 に代入します. x²+ y²+z² を連立してz,yをを用い て表す. (2) 分数式の値を求める際,その値をとで もおいて考えていくとラクなことが多いのです. ↓ my+yz+x この問題では、問題文でmとおいてあります. +2+2に代入する. I y+z_z+x+y=mより y 2 y+z=mx ①, z+x=my..... ② x+y=mz... ③ ①+②+③ より 2(x+y+z)=m(x+y+z) よって, (x+y+z) (m-2)=0 したがって, x+y+z=0 またはm=2 x+y+z=0のとき, y+z=1=-1 I y+z. =m より y+z=mx ...... ① I +1=mより2+x=my....... ② y 同様に, z+x= y=-1, y y x+y=-=-1 2 2 x+y=mよりx+y=mz... ③ 2 y+z=-x を代入 m=2となるx, y, zが存在 することを主張している なお、m=2のとき ①②よ りェyが得られ、同様に ② ③ より y=z が得られ 解法のプロセス よって, m=-1 y+z_z+x+y=m (2) 2 I y また,r=y=z (≠0) のとき =2となる? したがって,m=-1,2 を y+z=m, 2+1=m y (1+1/2)(1+7)(1+2/)=ty.y+zz+p y Z ytzztexty る I y 2 =m³ =-1, 8 として, ① ② ③を連立してmを求めます. こ のとき,x,y,zの文字を消去していくのも1つ の方針ですが,x,y,zが同等の扱いを受けてい るので(ryやzに対して特別な扱いを受けて いない), x, y, zの対称性を利用して処理するの が簡単でしょう (標問9参照)。 ①+②+③ をつくると 2(x+y+z)=m(x+y+z) (x+y+z) (m-2)=0 が得られます. これから x+y+z=0 またはm=2 となります. I x+y=m 2 と扱って [y+z=mx z+x=my x+y=mz とする. 演習問題 ↓ 6-1 x+4y=y-3.z≠0のとき、 2x²-xy-y² この連立方程式を解く、 2x2+xy+y2 の値を求めよ. (山梨学院大) IC (6-2x+y=y+z=2のとき、この式の値を求めよ。 (札幌大) y 章 1

解決済み 回答数: 1
数学 高校生

数学的帰納法で、n=k+1の証明でn=kで仮定した条件を用いて証明してもよいのでしょうか n=k+1で自分は不等式を作り左辺に移項したあと「n=kの仮定より」みたいな感じで証明したのですけどこれが解答として正しいやり方なのか教えてほしいです

基本 例題 47 数学的帰納法と不等式の証明 423 00000 25 を満たす自然数nに対して, 22 が成り立つことを数学的帰納法に よって証明せよ。 CHART & SOLUTION 数学的帰納法 (一般 [1] 出発点は n=1 に限らず [2] n=k の仮定から n=k+1 の証明 この例題では,n≧5 であるから,まず [1] n=1のときの代わりに [1] n=5のとき を出発点とする。 420 基本事項 1. 基本45 また, 不等式 A>B を証明するのであるから, A-B> を示せばよい。 解答 2">n2 ...... ① とする。 [1] n=5のとき (左辺 =25=32, (右辺) =52=25 ゆえに,不等式① は n=5のとき成り立つ。 ① [2] k≧5 として,n=k のとき ①が成り立つと仮定すると ときい)が成り立つと仮定 n=k+1 のとき,①の両辺の差を考えると $50 (= 17 (左辺)=2+1 1章 5 数学的帰納法 2k+1_(k+1)=2.2-(k+2k+1) >2k2-(k+2+1) + (右辺)=(k+1)2 +2.2">2.k² =k2-2k-1=(k-1)^2>05であるから すなわち 2 +1(k+1)2 よって, n=k+1 のときにも不等式①は成り立つ。 [1] [2] から, n≧5を満たすすべての自然数nについて不等 式①は成り立つ。 (k-1)^2はk=5で 最小値 14 (>0) をとる。 INFORMATION 2 と n2の大小関係 関数 y=2*, y=x2 のグラフは右の図のようになる。 このグラフから2">n (n≧5) がわかる。 y. 16- y=x2 これを繰り返すことに、 4F- v=2 O 2 4x

解決済み 回答数: 2
数学 高校生

PR29の3題について質問です。 なぜ置き換えが必要なのですか? どうしたらaよりbのほうが大きいとか大小関係がわかるんですか? 回答お願いします🙇

PR 不等式 la + bls|a|+|6| を利用して、 次の不等式を証明せよ。 ② 29 (1) a-bl≦|a|+|6| (3) la+b+cls|a|+|0|+|c| 第1章 式と証明 21 (2) la-clsla-6|+|b-c| [info] la + b/sla|+161 の証明は、基本例題 29 (1) を参照。 (1)|a+b|≦|a|+|6| のbを-6におき換えて la-bl≦|a|+|-6| ここで |-6|=|6| よって |a-b|≦|a|+|6| (2)|a+bl≦|a|+|6| の a を a-b, b を b-c におき換えて よって | (a-b)+(b-c)|≦la-6|+|b-c| la-cl≦la-b|+|b-c| (3)|a+b|≦|a|+|6| の a を a + b, bをcにおき換えて [(a+b)+cl≦la+6|+|c| また, la +6≦|a|+|6| から ①② から ...... ① la+6|+|c|≦|a|+|6|+|c| ...... ② la+b+cl≦|a|+|6|+|c| 両辺に |c|を加える A≤B, B≤C ⇒ASC PR 30 9 (1) 4a+≥12 a (1) 4a>0, a 9 9 係により a, b, c, d は正の数とする。 次の不等式が成り立つことを証明せよ。 また、 等号が成り立つの どのようなときか。 9 (2) (6+) (+) 24 ->0であるから,相加平均と相乗平均の大小関 4a+22/4a-2-2-6-12 9 よって 4a+-≧12 a 9 等号が成り立つのは4a= すなわち a=2のとき。 a 9 4a²-12a+9 9 +4a= 5 a² a α> 0 であるから 別解 4a+ i-12= a a (2a-3)2 a (2a-3)≥0 a>0 (2a-3)≧0 より よって 4a+ a+21 ≥12 a a 等号が成り立つのは、2α-30 すなわち α 32 のとき。 (実数20

解決済み 回答数: 1